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Page 670 In the first sentence after Definition A1.2, Assoc(x, y) = (x+y)+z
should be Assoc(x, y, z) = (x+ y) + z.

The words “k-close” were omitted from Definition A1.3, which should read

inDefinition A1.3 (k-close). Two points x,y ∈ Rn are k-close if for each
i = 1, . . . , n, then

∣∣[xi]k − [yi]k
∣∣ ≤ 10−k.

Page 671 Exercise A1.2 left out “Assoc(x, y, z) =.” The first sentence of
the exercise should read

“Show that the functions A(x, y) = x + y, M(x, y) = xy, S(x, y) = x − y,
and Assoc(x, y, z) = (x+ y) + z are D-continuous, and that 1/x is not.”

Page 675 Proposition A2.4: By “exactly” we mean “if and only if.” In any
case, “if and only if” is more appropriate here. We tend to use “precisely” (or,
more rarely, “exactly”) when we mean “if and only if” but where the result is
fairly obvious, which isn’t the case here.

The bottom graph in Figure A2.1 is wrong; it should be:

Page 682 Restatement of Theorem 2.7.13: in the next-to-last line, it should
be “has a unique solution in the closed ball U0”.

Page 691 We corrected Equation 2.9.13 in Section 2.9 (page 270). Of course
it should also be corrected here:

R1 = R|L−1|2
(√
|L|2 +

2
|L−1|2 − |L|

)
. 2.9.13

1



Page 692 The proof of Theorem 2.9.7 does not include a proof of the last
statement, concerning Equation 2.9.13. Here is the missing proof:

Proving Equation 2.9.13

Suppose |x− x0| < R1. Then

|f(x)− f(x0)| ≤ |x− x0| sup |[Df(x)]| ≤ R1 sup |[Df(x)]|. A7.11

We find a bound for |[Df(x)]|:

|[Df(x)]− [Df(x0)]| = |[Df(x)]− L| ≤︸︷︷︸
Eq. 2.9.11

1
2R|L−1|2 |x− x0| ≤

R1

2R|L−1|2

so

|[Df(x)]| ≤ |L|+ R1

2R|L−1|2 , i.e., sup |[Df(x)]| = |L|+ R1

2R|L−1|2 . A7.12

Therefore we want to find the largest R1 satisfying

R ≥
(
|L|+ R1

2R|L−1|2
)
R1. A7.13

The right-hand side is 0 when R1 = 0 and then increases as R1 increases, so we
want the largest value of R1 for which the inequality is an equality. Thus we
want to solve the quadratic equation

R2
1 + 2R|L−1|2 |L|R1 − 2R2|L−1|2 = 0, A7.14

which gives

R1 = R|L−1|2
(
−|L|+

√
|L|2 +

2
|L−1|2

)
. A7.15

Appendix A.8 The proof is not as clear as it should be as to why the root
found by Newton’s method is unique in all of W0 and not just in U0. This
question is addressed by part (3) of the proof of the inverse function theorem,
which refers to Remark A5.5 on page 688. Since we treat the implicit function
theorem as a special case of the inverse function theorem, this is relevant. In
any future editions we plan to put the content of Remark A5.5 in Section 2.7,
perhaps immediately after the statement of the Kantorovich theorem.

Page 695 Equation A8.6 is wrong. It should be

F
(

g(y)
y

)
= 0.

Page 705 Second line after Equation A11.16: it might be clearer to write
“which satisfy |Qkf,a(~h)| ∈ O(|~h|)”, rather than “so that |Qkf,a(~h)| ∈ O(|~h|).”
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Page 707 Equation A12.3 should end with ds, not dt.

Page 723 In the next-to-last line of the paragraph beginning “Fortunately”,
the word “volume” should be “measure”.

Page 724 Corollary A16.3 is wrong. It is correct if we replace “volume” by
“measure.” Seeing why the proof is correct requires the following corollary to
Theorem 4.4.5:

If f and g are integrable functions on Rn, g ≥ f , and
∫
f(x)|dnx| =∫

g(x)|dnx|, then {x | f(x) 6= g)x) } has measure 0.

We propose making this into an exercise, with the hint: Show that if g(x0) >
f(x0) and g−f is continuous at x0, then

∫
g(x)|dnx| >

∫
f(x)|dnx|. Then apply

Theorem 4.4.5.

Page 726 Second line of the proof: replacing f by χXf uses the fact that the
product of two R-integrable functions is integrable. This is proved in Corol-
lary 4.4.8; it also follows from Theorem 4.3.1. (But the product of two L-
integrable functions is not necessarily L-integrable! However, the product of an
L-integrable function by a bounded L-integrable function is L-integrable; see
the lemma – a somewhat weaker statement – discussed in the note for page
754.)

Page 727 In the first line, we write that every x is in some paving tile. It is
possible that x may be in more than one tile. By Corollary 4.3.10, such points
don’t affect integals; however, the definition of g should take such points into
account:

g(x) =


MPN′′ (x)(f) if PN ′′(x) ∩ ∂DN = /© and x is contained in a

single tile

− sup |f | otherwise.

We have also rewritten some of the rest of the page, in hopes of making it
clearer:

Now we compute the upper sum UPN′′ (f), as follows:

UPN′′ (f) =
∑

P∈PN′′
MP (f) voln P A17.8

=
∑

P∈PN′′ ,
P∩∂DN= /©

MP (f) voln P

︸ ︷︷ ︸
contribution from P

entirely in dyadic cubes

+
∑

P∈PN′′ ,
P∩∂DN 6= /©

(
MP (f) voln P.

︸ ︷︷ ︸
contribution from P that intersect

the boundary of dyadic cubes

We want a statement that relates integrals computed using dyadic cubes and
paving tiles. Since

∑
P∈P χP = 1 except on a set of volume 0,
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The sum of characteristic func-
tions is the constant function 1 ex-
cept on a set of volume 0.

∫
Rn
g(x)|dnx| =

∑
P∈P′′N

∫
Rn
g(x)χP (x)|dnx|

=
∑

P∈PN′′ ,
P∩∂DN= /©

MP (f) voln P +
∑

P∈PN′′ ,
P∩∂DN 6= /©

(− sup |f |) voln P.

Note that we can write the last term in Equation A17.8 as

Since MP (f) is the least upper
bound over P while sup |f | is the
least upper bound over Rn, we
have MP (f) + sup |f | ≤ 2 sup |f |.

∑
P∈PN′′ ,

P∩∂DN 6= /©

(
MP (f) voln P =

∑
P∈PN′′ ,

P∩∂DN 6= /©

(
MP (f)

cancels out︷ ︸︸ ︷
− sup |f |+ sup |f |

)
voln P

=
∑

P∈PN′′ ,
P∩∂DN 6= /©

(
− sup |f |

)
voln P +

∑
P∈PN′′ ,

P∩∂DN 6= /©

(
MP (f) + sup |f |

)
voln P.

So we can rewrite Equation A17.8 as

UPN′′ (f) =
∫
Rn
g|dnx|+

∑
P∈PN′′ ,

P∩∂DN 6= /©

≤2 sup |f | (see note in margin)︷ ︸︸ ︷(
MP (f) + sup |f |

)
voln P. A17.11

Pages 742, 743, 745 Each page has “integrable functions” that should be
“R-integrable functions”:

Proposition A21.1: “Let fk : Rn → R be a sequence of R-integrable functions
. . . ”

Corollary A21.2: “Let hk be a sequence of R-integrable nonnegative functions
on Q . . . ”

Proposition A21.3: “Suppose fk is a sequence of R-integrable functions all
satisfying . . . ”

(These statements come in in the course of proving Theorem 4.11.4, which
is a statement about Riemann integrals.)

Page 744 The last sum in Equation A21.8 should have i, not k:
∞∑
i=1

∫
hi|dnx|.

Page 747 The letter A is is in the wrong font in one place (A should be A):

“But this argument requires “measure 0.” To apply it to the case where
A 6= 0 . . . ”
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Page 748 Equation A21.26: In the first line, the sums should be over C ⊂ Y0,
not C ∈ Y0. But then we also have to specify that the C are in DN0(Rn). This
gives

voln(Y0)
A

ε
=

∑
C⊂Y0

C∈DN0 (Rn)

A

ε
voln(C) ≤

∑
C⊂Y0

C∈DN0 (Rn)

MC(h0) voln(C)

≤
∑

C∈DN0

MC(h0) voln(C) = UN0(h0) ≤ 2A,

A21.26

In Equation A21.29, hm comes with a + sign and hm+1 with a − sign; it
should be reversed. In the second line, the = should be <. So the equation
should read∫

Rn
gm+1(x)|dnx| =

(∫
Rn
hm+1(x) |dnx| −A

)
−
(∫

Rn
hm(x) |dnx| −A

)
≤ A

4m+3
+

A

4m+2
<

A

2 · 4m+1
. A21.29

Page 749 Equation A21.35 : on the far right, the A in the numerator should
be ε:

voln(Ym+1) ≤ ε2m+1

4m+1
=

ε

2m+1
.

Page 750 Equation A21.39: Writing “for j = 2, . . . ,∞” is fairly standard
but it would be better as “2 ≤ j <∞”; we do not mean to suggest that j =∞.

The equation in the footnote contains mistakes with the absolute value signs
and parentheses. It should be:∫

Rn
|gk,1(x)||dnx| =

∫
Rn

∣∣∣∣∣∣
∞∑
i=1

fk,i(x)−
∞∑

i=m(k)+1

fk,i(x)

∣∣∣∣∣∣ |dnx|

≤
∫
Rn

∣∣∣ ∞∑
i=1

fk,i(x)
∣∣∣|dnx|+

∞∑
i=m(k)+1

∫
|fk,i(x)| |dnx|

≤
∫
Rn
|fk(x)|dnx|+ 1

2k
.

Page 753 Two lines after Equation A21.49 replace “volume 0” by “measure
0” in two places. This uses Corollary A16.3, which has been corrected (it
concerns measure, not volume).

Sentence right after Equation A21.50: third and fourth “equalities”, not
“inequalities.”
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Elaboration: In line two of the proof, we are using Fubini for Riemann
integrals. More precisely, Equation A21.49 is true for Riemann integrals if one
ignores sets of measure 0, and so it is true without restriction for Lebesgue
integrals.

Page 754 Third displayed equation: the bracket on the left should say “finite
because f , hence g, is L-integrable.”

In the paragraph beginning “For the converse”, Rn should be Rn+m – i.e.,
“every closed cube C ∈ D0(Rn) is compact” should be

“every closed cube C ∈ D0(Rn+m) is compact.”

Even with that correction, we were not quite rigorous in arguing that fχC
is L-integrable. Here is another version:

Lemma If f is L-integrable on Rn, and g is an R-integrable function with

0 ≤ g ≤ 1, then fg is L-integrable.

Proof. Since f is L-integrable, we can set f =
∑
k fk with the fk R-integrable

and ∑
k

∫
Rn
|fk(x)| ||dnx| <∞.

We have fg =
∑
k fkg, where fkg is R-integrable; since 0 ≤ g ≤ 1, we have∑

k

∫
Rn
|fkg(x)| ||dnx| ≤

∑
k

∫
Rn
|fk(x)| ||dnx| <∞.

Therefore fg is L-integrable. ¤

Now take a closed cube C ∈ D0(Rn) and cover it by finitely many balls
B1, B2, . . . , BN , over which (by the first hypothesis of the converse) f is L-
integrable. Then we can write

fχC = fχCχB1 + fχCχB2−∪(B2−B1) + · · ·+ fχCχBN−∪N−1
j=1 Bj

By the above lemma, the terms on the right are all L-integrable, so by Propo-
sition 4.11.15, fχC is L-integrable.

Page 755 We claim we are proving the “if” part in the text, leaving “if only”
as an exercise. Actually, it’s the reverse. It would be clearer to use =⇒ and
⇐=. In the text we prove ( =⇒ ) (that if f is L-integrable, then |det[DΦ]|(f ◦Φ)
is L-integrable and the formula is correct).

Margin note: The first and third equalities of Equation A21.59 are appli-
cations of Theorem 4.11.16. In both cases, the hypothesis of that theorem is
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satisfied by Equation A21.58. We could add an extra step:∫
V

f(v)|dnv|
Eq.A21.57︷︸︸︷

=
∫
V

∑
k,i

fk,i(v)|dnv|
Thm. 4.11.16︷︸︸︷

=
∑
k,i

∫
V

fk,i(v)|dnv|

Thm. 4.10.12︷︸︸︷
=

∑
k,i

∫
U

∣∣det[DΦ(u)]
∣∣ fk,i(Φ(u)) |dnu|

Thm. 4.11.16︷︸︸︷
=

∫
U

∣∣det[DΦ(u)]
∣∣(∑

k,i

fk,i(Φ(u))
)
|dnu|;

A21.59

Page 755 Last line: “Exercise A21.2” should be “Exercise A21.5.”

Page 759 Exercise A21.5 (last exercise of the section, incorrectly denoted
A21.2): as indicated in the note for page 755, this exercise asks you to prove
the “if” part, not “only if”. In future editions this exercise will be:

Justify the (⇐= ) part of Theorem 4.11.20 (if |det[DΦ]|(f ◦Φ) is L-integrable,
then f is L-integrable and the formula given in the theorem is correct), using
the ( =⇒ ) part and the chain rule.

Page 760 In Figure A22.1, the top lines in both rectangles should be darker.

Page 765 The margin note should start with “In,” not “in.”

Page 763 4th line: rather than state that the exterior derivative dϕ is a
(k + 1)-form, we should say “Since ϕ is a k-form, the exterior derivative dϕ
should be a (k + 1)-form. Thus we need to evaluate it on k + 1 vectors and
check that it is multilinear and alternating. This involves integrating ϕ . . . ”

Page 766 Definition A24.1 should read

inDefinition A24.1 (Pullback by a linear transformation). Let V,W
be vector spaces, and T : V → W be a linear transformation. Then T ∗ is a
linear transformation Ak(W ) → Ak(V ), defined as follows: if ϕ is a k-form
on W , then T ∗ϕ is the k-form on V given by

T ∗ϕ(~v1, . . . , ~vk) = ϕ
(
T (~v1), . . . , T (~vk)

)
. A24.1

Page 767 In the last margin note, an end parenthesis is missing: g(Pf(x)

should be g(Pf(x))

Page 767 In the line immediately before Definition A24.4 there is a super-
fluous comma.
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Page 769 In the last line of Equation A24.14, the g∗f∗ should be f∗g∗:

= g∗ϕ
(
Pf(x)

(
[Df(x)]~v1, . . . , [Df(x)]~vk

))
= f∗g∗ϕ

(
Px(~v1, . . . , ~vk)

)
Page 770 We have rewritten the first paragraph:

Why does this result matter? To define the exterior derivative, we used the
parallelograms Px(~v1, . . . , ~vk). To do this, we had to know how to draw straight
lines from one point to another; we were using the linear (straight) structure of
a vector space. (We used Rn, but any vector space would have done.) Theorem
A24.8 says that “curved parallelograms” (little bits of manifolds) would have
worked as well. Thus the exterior derivative is not restricted to forms defined
on vector spaces.

(In this book we have discussed forms on vector spaces, but differential forms
can also be defined on manifolds embedded in Rn and on abstract manifolds.
Theorem A24.8 says that an exterior derivative exists for such forms. It is a
crucial result, since forms without an exterior derivative would be of no interest.)

Title of Theorem A24.8: By “intrinsic” we mean “inherent: independent
of some external conditions or circumstances.” The pullback of a form by a
C1 mapping is a C1 change of variables. Equation A24.17 says that when a
form is pulled back by a C1 mapping, its exterior derivative remains the same,
translated appropriately into the new variables.

Page 770 In the first line of Equation A24.18 (last term), [Dg(x)] should
be [Df(x)]:

f∗dg
(
Px(~v)

)
= dg

(
Pf(x)[Df(x)]~v

)
= [Dg(f(x))][Df(x)]~v

= [Dg ◦ f(x)]~v = d(g ◦ f)
(
Px(~v)

)
= d(f∗g)

(
Px(~v)

)
.

A24.18

Page 770 Equation A24.19: above the first equal sign, “Theorem A6.7.8”
should be “Theorem 6.7.8.”

Inside back cover The “useful formulas: trigonometry” would be more
useful if they were all correct! Sorry! The fourth and fifth formulas should be

cosα = sin(π/2− α) and sinα = cos(π/2− α).

(For the formula for sine, it doesn’t make a difference, but for cosine, it does.)

Page 782 In Exercise A25.2, “(proof of Lemma A25.12)” should be “(see
Equation A25.12)”.

Index

Page 792 dominated convergence (Lebesgue), 515 (not 516)
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The listing for diffeomorphism on page 514 should be deleted.

Page 797 triangle inequality, 76–77 (not 76)

Additions to index:

active variable, 179, 274, 293

augmented matrix, 190, 196

derivative of determinant, 481

divergence, 635–637, 639–640

d’Alembert, Jean Le Rond, 119, 217

Dedekind, Richard, 234

graph (of function), 30, 293, 294, 295, 377, 378, 379, 431, 433

invertibility of matrices, 223

KAM theorem, 438

Kolmogorov, Andrei, 417, 481

L-integrable, 508; see also Lebesgue integral

Lebesgue integral compared to Riemann integral, 508, 509

Leibnitz’s rule, 633

level curve, 301

level set, 301

limit, 89, 90, 93, 97

linear independence, 228

linear programming, 248

maximum, different from maximum value, 114

Maxwell’s equations, 628, 642

minimum, different from minimum value, 115

Moser, Jürgen, 438

normal vector field, 581–582

parametrized domain, 574–575

passive variable, 180, 274, 293

pigeonhole principle, 561

power set, 24
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precisely if, 67

R-integrable, 508; see also Riemann integral

Riemann integral compared to Lebesgue integral, 508, 509

span, 228

Stokes’s theorem, generalized, 614

unit sphere, 311

10


