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Page 402 Six lines from the bottom, in the statement labeled (2): exists,
not exits.

Page 411 We should have included in this section the following statement
about how volume scales, or an arbitrary subset of Rn:

inProposition (Scaling volume). If A ⊂ Rn has volume and t ∈ R, then
tA has volume and voln(tA) = tn voln(A).

Proof. By Proposition 4.1.19, this is true if A is a parallelogram, in particular
if A is a cube C ∈ DN . Assume A is any subset of Rn. For any N , let fN be
the function that is the constant function 1 on cubes in DN that are completely
inside A, and let gN be the function that is the constant function 1 on cubes in
DN that completely cover A:

fN =
∑

C∈DN,
C⊂A

χC , gN =
∑

C∈DN,
C∩A6=/©

χC ,

so that fN ≤ χA ≤ gN . Then

fN (tx) ≤ χA(tx) = χtA(x) ≤ gN (tx).

By Proposition 4.1.19,

∫
fN (tx) =

∑
C∈DN,
C⊂A

∫
χC(tx) =

∑
C∈DN,
C⊂A

voln tC︷ ︸︸ ︷∫
χtC(x) =︸︷︷︸

Prop.4.1.19

tn
∑

C∈DN,
C⊂A

voln C︷ ︸︸ ︷∫
χC(x) = tn

∫
fN (x).

(We omitted the |dnx| in the integrals above in hopes of making the equation
more readable.) Similarly,

∫
gN (tx) = tn

∫
gN (x). Thus

tn
∫
fN (x) =

∫
fN (tx) ≤ L(χta) ≤ U(χtA) ≤

∫
gN (tx) = tn

∫
gN (x).
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Since A has volume,

lim
N→∞

tn
∫
fN = lim

N→∞
tn
∫
gN = tn volnA,

so, in particular, for any ε > 0,

U(χtA)− L(χtA) < ε,

so U(χtA) = L(χtA), so χtA is integrable, and

voln(tA) =
∫
χtA = tn voln(A). ¤

Page 412 In Exercise 4.1.5, part (d) and Exercise 4.1.6, part (c), a should
be positive: 0 < a < b.

Page 413 Exercise 4.1.14: Since the geometric mean for negative numbers
is problematic, it would be better to define f as follows:

f(x) =
{

0 if x /∈ [0, 1], or x is rational

1 if x ∈ [0, 1], and x is irrational.

Page 416 The statement that an outcome with probability 0 will not occur
may seem to contradict the statement, in the subsequent discussion of infinite,
continuous sample spaces, that in such a setting “each individual outcome has
probability 0.” There is actually no contradiction. When a sample space is in-
finite, an individual outcome cannot occur because it is physically meaningless.
We can think of spinning a bottle so that it ends up at exactly angle π/2, but
we could never measure such a result. So, although it may seem obvious that
each time we spin the bottle it lands on some angle, we really should think of it
as landing within some measurable range of angles. It may seem peculiar that
an infinite number of outcomes each with probably 0 can add up to something
positive (in this case, 2π), but it is the same as the more familiar notion that a
line has length, while the points that compose it have length 0.

Page 417 Margin note, third line from the bottom: “introducing them”, not
“introducing then”.

Page 418 Second line after Equation 4.2.9: “the needle intersects,” not “the
needle intersect.”

Line immediately above Equation 4.2.10:
∫ π

0
sin θ |dθ| = 2. (It does not equal

π.)

Page 419 Margin note, line 4: “to 20 feet,” not “to20 feet.”

Page 420 Line 8: there is an extra period after “data.”
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Page 421 Equation 4.2.15: this sums to 2, not 4/3! So in the next sentence,
it should be “any sum smaller than $2 . . . ”

We get the result 2 as follows:

For |x| < 1, we have
∞∑
n=1

xn =
1

1− x, so
∞∑
n=1

nxn−1 =
1

(1− x)2
,

which gives
∞∑
n=1

nxn =
x

(1− x)2
,

which gives
∞∑
n=1

n · 1
2n

=
1/2

(1/2)2
= 2.

Page 422 Definition 4.2.12 of variance: There is an unfortunate typo in
Equation 4.2.17; a µ(x) was omitted on the right-hand side. The equation
should be

Var (f) = E
((
f − E(f)

)2) =
∫
S

(
f(x)− E(f)

)2
µ(x)|dkx|.

Page 424 In Equation 4.2.25, the −t2 in the exponent should be −x2:

µ(x) =
1√
2π

e−x
2/2.

Page 426 In the margin note about the error function, the 2π on the left
should be

√
2π:

1√
2π

∫ a

0

e−
t2
2 dt =

1
2

erf
(
a√
2

)
.

Page 428 Exercise 4.2.5: The sample space is all of R. Part (a) should have
(x) at the end:

µ(x) =
1
2a
χ[−a,a](x)

Part (b) should be with the chapter review exercises, as it uses material from
Section 4.11.

Page 429 Caption to Figure 4.3.2, last sentence: “The center region is
black”, not “The center region of is black”.
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Page 431 We are not consistent in our use of notation for graphs. In Def-
inition 3.1.1 and on this page we use Γ(f), but on page 433 we use Γf and on
page 778 we use gr(f).

Page 436 First line of second paragraph: “in Definition measuredef” should
be “in Definition 4.4.1.”

Page 436 In Definition 4.4.1 (and in other definitions in the text), “if and
only if” is not necessary. Mathematical definitions (unlike definitions in or-
dinary language) are always unambiguous. However, there are other ways to
define measure 0; if one used a different definition, the statement of Definition
4.4.1 would still be true, but it would be a proposition, requiring proof, and the
“if and only if” would be needed.

Page 437 In the last line of the proof of Theorem 4.4.3, the second equation
should be ∑

i,j

volBi,j ≤ ε

(not volX1 ∪X2 ∪ · · · ≤ ε).

Page 438 p.438 Line 10: Example 4.3.3, not 4.4.2:

. . . unlike the function of Example 4.3.3, which, as far as we know, is only
a pathological example, devised to test the limits of mathematical statements.

Page 440 Second paragraph of the proof of Lemma 4.4.6: |xj − yj |, not
|f(xj)− f(yj)|:

“Since |xj − yj | → 0 as j →∞, the subsequence yjk also converges to p.”

The next paragraph would perhaps be clearer if the first sentence were:

“The function f is certainly not continuous at p, so p has to be in a particular
box, which we will call Bp.”

Page 441 We should perhaps have reminded readers that ∃ means “there
exist.” The symbol was used in Section 0.2.

Page 454 Exercise 4.5.17, part (a): “Let Mr(x) be the rth smallest . . . ”,
not “Let Mr(x) be the rth largest . . . ”.

Page 459 In Equation 4.6.14, the sum on the right should start at i = 1,
not i = −k: ∫ 1

−1

f(x) dx ≈
k∑
i=1

wi
(
f(xi) + f(−xi)

)
,
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Page 465 Exercise 4.6.2: for k = 1, we meant the initial conditions to be
x1 = .7 and x2 = .5 (not x1 = 17 and x2 = .57).

Page 467 Definition 4.7.2: We should have specified a bounded subset and
a finite collection:

inDefinition 4.7.2 (A paving of X ⊂ Rn). A paving of a bounded subset
X ⊂ Rn is a finite collection P of subsets P ⊂ X such that

∪P∈PP = X, and voln(P1 ∩ P2) = 0 (when P1, P2 ∈ P and P1 6= P2).

Page 468 In Definition 4.7.4 we use “diam” for “diameter,” but we don’t
define it until page 487, just after Equation 4.9.9.

Page 468 At present, Theorem 4.7.5 requires f to be integrable. In a future
edition, we will change Theorem 4.7.5 to something like

inTheorem 4.7.5 (Integrals using arbitrary pavings) . Let X ⊂ Rn be a
bounded subset, and PN be a nested partition of X. Suppose the boundary
∂X satisfies voln(∂X) = 0. Then f : Rn → R is integrable if and only if the
upper and lower limits using the nested partition are equal:

lim
N→∞

UPN (f) = lim
N→∞

LPN (f). 4.7.4

In that case, they are both equal to∫
X

f(x) |dnx|. 4.7.5

This will solve some problems with the current proof of Theorem 4.9.1.

Page 472 Last margin note: Definition 2.1.11 does not exist. Column op-
erations are defined by replacing the word “row” in Definition 2.1.1 of row
operations by the word “column”.

Page 475 The last margin note should be on page 476.

Page 478 Equation 4.8.36: Note that when we write this permutation as
(2, 3, 1) we are simply dropping the left-hand side, which carries no information.

Conflicting “shorthand” notation for permutations exist. As we describe it,
the notation (3, 1, 2) means that the first entry goes to third place, the second
goes to first, and the third goes to second. But (3, 1, 2) is often interpreted as
the cyclical permutation “third goes to first, which goes to second, which goes
back to third”: 3→ 1→ 2→ 3 . . . .
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In this cyclical notation, the permutation

 1
2
1

 7→
 3

2
1

, which leaves the

second entry unchanged, would be written (3, 1), i.e., 3→ 1→ 3. The permu-
tation that we would write (3, 5, 1, 4, 2) would be written (1, 3)(2, 5), or possible
(13)(25).

Page 478 Definition 4.8.15: We regret not having stated explicitly that
sgn(σ ◦ τ) = sgnσ sgn τ :

sgn(σ ◦ τ) = detMσ◦τ = det(MσMτ ) = detMσ detMτ = sgnσ sgn τ.

It was to get this equation easily that we defined the signature as we did, in
terms of the determinant, which we had already defined in terms of its prop-
erties. The standard approach is to define the determinant in terms of the
signature (turning Theorem 4.8.17 into a definition). This makes it excruciat-
ing to prove that sgn(σ◦τ) = sgnσ sgn τ , in order to get detA detB = det(AB).
Of course, in mathematics, when you remove a difficulty in one place, it typi-
cally springs up someplace else; with our definition of the determinant, proving
existence was not easy.

Page 480 In two places in the first line after Equation 4.8.44, sgn(σ) should
be sgn(σ′): “and the result follows from sgn(τ−1 ◦ σ′) = sgn(τ−1)

(
sgn(σ′)

)
=

− sgn(σ′), since . . . ”

Page 481 First line after Definition 4.8.19: one too many “is.”

Page 484 Hint for Exercise 4.8.7: This hint is not actually used in the
solution. Using the hint, one could write the following for part (a):

det |~a1, . . . , ~0, . . . , ~an| = det |~a1, . . . , 2~0, . . . , ~an| = 2 det |~a1, . . . , ~0, . . . , ~an|,

which implies that the determinant must be 0.

Page 485 Last line of first paragraph: “volume of the parallelepiped,” not
area.

Page 488 In the equation following Equation 4.9.12, the left-hand side
should be

UT (DN )(χT (A))− LT (DN )(χT (A));

the upper and lower sums are with respect to the nested partition T (DN ).

Page 494 Discussion after Proposition 4.10.3: The reference should be to
Corollary 4.3.10, not to Theorem 4.3.9. (That theorem concerns integrability,
not the actual integral.)
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Page 496 Last margin note: The sentence “At ϕ = −π/2 and ϕ = π/2,
r = 0” should be deleted.

Page 502 Line 5: “in this case we can solve xy = u”, not “in this case we
can solve y = u/v”.

Page 502 Bottom margin note: we mean to write Exercise 4.10.4, not 4.5.19.

Page 503 Exercise 4.10.3: This exercise should read

“Show that in complex notation, with z = x+ iy, the equation of the lemnis-
cate of Figure 4.10.3 can be written |z2 − 1

2 | = 1
2 . Hint: See Example 4.10.19.”

The equation given in the text is the equation for a different lemniscate.

Page 508 Caption: “first good fortune,” not “first good fortunate.”

Page 509 End of last margin note: “except on a set of measure 0”, not
“except on a measure 0.”

The proof of Theorem 4.11.8 is not correct; the main idea is right but there
is a fiddly problem with the truncations. Here is the rewritten proof:

Proof. Set hk = fk−gk, and Hl =
∑l
k=1 hk. The functions Hl form a sequence

of Riemann-integrable functions converging to 0 except on a set of measure 0;
if in addition they all have support in BR(0) and |Hl| ≤ R for all l, then Hl

meets the conditions for fk in Theorem 4.11.4, so

lim
l→∞

∫
Rn
Hl(x) |dnx| = 0 i.e., lim

l→∞

l∑
k=1

∫
Rn
hk(x) |dnx| = 0, 4.11.18

proving the result. We will reduce the general case, where Hl is not bounded
with bounded support, to this one, by appropriately truncating the Hl.

Choose ε > 0 and choose M such that
∞∑

k=M+1

∫
Rn
|hk(x)||dnx| < ε, 4.11.19

so that for l > M we have∫
Rn
|Hl(x)−HM (x)||dnx| ≤

l∑
k=M+1

∫
Rn
|hk(x)||dnx| ≤

∞∑
k=M+1

∫
Rn
|hk(x)||dnx| < ε.
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R

-R

BR(0)

Figure 4.11.1b.

The thin line shows the graph

of f , and the dark line shows

inf(RχBR(0), f). Next we take the

sup of the dark line and−RχBR(0),

to get the thick, light gray line rep-

resenting [f ]R.

Next choose R such that sup |HM (x)| < R/2 and HM (x) = 0 when |x| ≥ R.
We will define the R-truncation of Hl by the formula

[Hl]R = sup
(
−RχBR(0), inf

(
RχBR(0), Hl

))
; 4.11.20

i.e., replace Hl(x) by 0 if |x| > R, by R if Hl(x) > R, and by −R if Hl(x) < −R,
as shown in Figure 4.11.1b. The [Hl]R form a sequence of Riemann-integrable
functions all with support in BR(0) and all bounded by R, and tending to 0
except on a set of measure 0, so, by Theorem 4.11.4,

lim
l→∞

∫
Rn

[Hl]R(x) |dnx| = 0.︸ ︷︷ ︸
main motor of the proof

4.11.21

To prove Equation 4.11.17, we
need to show that

lim
l→∞

∫
Rn
Hl(x) |dnx| = 0.

To do this, we consider Hl as
the sum [Hl]R + Hl − [Hl]R and
consider separately the integral of
[Hl]R (see Equation 4.11.21) and
the integral of Hl − [Hl]R (the re-
mainder of the proof).

The upper sum UN (|Hl−HM |)
is small, so A must have small
volume; in fact, it is at most 2ε/R:

ε > UN |Hl −HM |

=
∑

C∈DN (Rn)
MC |Hl −HM | voln C

≥
∑

C∈DN (Rn)
C⊂A

MC |Hl −HM | voln C

≥
∑

C∈DN (Rn)
C⊂A

(R/2) voln C

= (R/2) volnA.

At this point we have done most of the work (the hard part was proving Theorem
4.11.4). But, for l > M , we still need to deal with the difference Hl − [Hl]R =
(Hl−HM )− ([Hl]R−HM ). We already know that the integral of |Hl−HM | is
less than ε, so we only need to consider the integral of |[Hl]R −HM |. Outside
BR(0) we have HM = 0 and [Hl]R = 0, so∫

Rn−BR(0)

∣∣[Hl]R −HM (x)
∣∣|dnx| = 0. 4.11.22

For the integral of |[Hl]R−HM | inside BR(0), first find N such that UN (|Hl−
HM |) < ε. Then consider the union A of the cubes C ∈ DN (Rn) that intersect
BR(0) and where MC(|Hl −HM |) > R/2. As shown in the margin, these have
total volume at most 2ε/R. Let B be the union of the cubes C ∈ DN (Rn)
that intersect BR(0) and such that MC(|Hl − HM |) ≤ R/2; on these, |Hl| ≤
|Hl −HM |+ |HM | ≤ R/2 +R/2 = R, so [Hl]R = Hl. Thus∫

BR(0)

∣∣∣[Hl]R(x)−HM (x)
∣∣∣|dnx| 4.11.23

=
∫
A

∣∣∣[Hl]R(x)−HM (x)
∣∣∣|dnx|+

∫
B

∣∣∣[Hl]R(x)−HM (x)
∣∣∣|dnx|

≤3R
2

voln(A) +
∫
B

∣∣∣Hl(x)−HM (x)
∣∣∣|dnx| ≤ 3ε+ ε = 4ε. ¤

Page 510 Equation 4.11.19: We meant to write the sums with k = m + 1,
not k = m. (But it’s correct as stated; the sums starting with k = m are at
least as big as the sums starting with k = m+ 1, so either way we can go from
the third to the fourth lines of Equation 4.11.21.)

A somewhat more serious issue is that if [fk]R = fk and [gk]r = gk, this does
not imply [fk−gk]R = fk−gk. The simplest way to fix this seems to be change
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Equation 4.11.19, stating explicitly that we are choosing R big enough so that:
m∑
k=1

fk =
m∑
k=1

[fk]R,
m∑
k=1

gk =
m∑
k=1

[gk]R,
m∑
k=1

fk − gk =
m∑
k=1

[fk − gk]R.

4.11.19

The left side of Equation 4.11.22 should be an absolute value:∣∣∣∣∣
∫
Rn

p∑
k=1

[fk − gk]2R(x) |dnx|
∣∣∣∣∣ < ε. 4.11.22

We perhaps should have said that Equation 4.11.22 uses the dominated con-
vergence theorem. We have

lim
p→∞

∫
Rn

p∑
k=1

[fk − gk]2R(x)|dnx| =︸︷︷︸
dom. converg.

∫
Rn

(
lim
p→∞

p∑
k=1

[fk − gk]2R(x)︸ ︷︷ ︸
0 by hypothesis

)
|dnx| = 0.

Page 511 First line after Equation 4.11.27: “at one point,” not “at one
points.”

Page 514 The statement in the margin that “the union of sets of measure
0 has measure 0” is incorrect. It should be “the union of finitely many (or
countably many) sets of measure 0 has measure 0.”

Page 514 The proof of Proposition 4.11.14 is not correct. It should be as
follows:

Proof. Suppose f =
∑∞
k=1 fk and g =

∑∞
k=1 gk, with all fk, gk R-integrable,

and
∞∑
k=1

∫
Rn
|fk(x)| dx <∞,

∞∑
k=1

∫
Rn
|gk(x)| dx <∞. 4.11.44

Define Fm =
∑m
k=1 fk and Gm =

∑m
k=1 gk, Hm = sup{Fm, Gm}.

The problem is that the hypothesis f ≤
L

g does not imply that for m suf-

ficiently large we have Fm ≤
L

Gm: the inequality might go the other way on

smaller and smaller sets. The solution will be to find new R-integrable functions
hk such that g =

∑∞
k=1 hk, and such that if we set Hm =

∑m
k=1 hk, then indeed

Fm ≤
L

Hm for all m.

Define Hm = sup{Fm, Gm}, and hm = Hm −Hm−1 (where we set H0 = 0).
finally hm = Hm − Hm−1 (where we set H0 = 0). Then certainly Fm ≤ Hm,
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and
∞∑
m=1

hm(x) = lim
m→∞

Hm(x) = g(x). 4.11.45

Moreover,

|hm(x)| = |Hm(x)−Hm−1(x)| ≤ sup{|fm(x)|, |gm(x)|} ≤ |fm(x)|+ |gm(x)|.

We see the first inequality as follows. If the sup defining H is given by F

(resp. G) for both m and m−1, clearly hm(x) = fm(x) (resp. hm(x) = gm(x)).
If it is given by F for m and by G for m− 1, then

|hm(x)| = |Fm(x)−Gm−1(x)| ≤ |Fm(x)− Fm−1(x)| = |fm(x)| 4.11.46

and similarly in the fourth case. Thus
∞∑
m=1

∫
Rn
|hm(x)||dnx| ≤

∞∑
m=1

∫
Rn
|fm(x)||dnx|+

∞∑
m=1

∫
Rn
|gm(x)||dnx| <∞.

4.11.47

Finally∫
Rn
f(x)|dnx| =

∞∑
k=1

∫
Rn
fk(x)|dnx| = lim

m→∞

∫
Rn
Fm(x)|dnx|

≤ lim
m→∞

∫
Rn
Hm(x)|dnx| =

∫
Rn
g(x)|dnx|. ¤

Page 514 Proposition 4.11.15: We should have specified that a and b are
constants.

Page 516 We should have mentioned that Theorems 4.11.19 and 4.11.20 are
proved in Appendix A.21.

Page 518 In the last line in the margin, the third integral concerns f2, not
f1: ∫

f(x)dx =
∫
f1(x) dx+ i

∫
f2(x) dx.

Page 520 Equation 4.11.73: An integral is missing on the second line. The
equation should be

lim
h→0

Lf(s+ h)− Lf(s)
h

= lim
h→0

∫ ∞
0

e−(s+h)t − e−st
h

f(t) dt

= lim
h→0

∫ ∞
0

f(t)e−st
e−ht − 1

h
dt
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Page 521 Parts (b) of Exercises 4.11.6 and 4.11.7 are too difficult and should
be deleted.

Page 522 Margin note: “not absolutely convergent,” not “not absolutely
convergence.”

Page 526 Exercise 4.27: a sum was omitted from the definition of f . It
should be

f(x) =
∞∑
k=1

1
2k

1√
|x− ak|

.
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