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inf: infimum, not minimum
Preface

Page xv 16th line from bottom: “some of the material,” not “some of
material.”

Chapter 0

Page 4 Second and third lines from the bottom: To be punctilious, we should
have said “for all y ∈ R:

“For all x ∈ R and for all ε > 0, there exists δ > 0 such that for all y ∈ R, if
|y − x| < δ, then |y2 − x2| < ε.”

Margin note about Bowditch: “American Bowditch,” not “America . . . ”

Page 5 There are some inconsistencies of notation. In future editions we
will write Equation 0.2.2 as

The opposite of (∀x)P (x) is (∃x) not P (x).

(But if we had something more complicated than P (x) we would put it in
parentheses.)

Most mathematicians avoid the symbolic notation, instead writing out quan-
tifiers in full. But when there is a complicated string of quantifiers, they often
use the symbolic notation to avoid ambiguity.

Page 7 It follows from the definition of ⊂ that the empty set /© is a subset
of every set.

We should have included an eighth “word”:
= “equality”; A = B if A and B have the same elements

and specified that the symbol /∈ (“not in”) means “not an element of”; similarly,
6⊂ means “not a subset of” and 6= means “not equal”.
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We should also have noted that the order in which elements of a set are listed
(even assuming they are listed) does not matter, and that duplicating does not
affect the set; for example, {1, 2, 3} = {1, 2, 3, 3}.
Page 12 Example 0.4.4: The first sentence after the displayed equation
should be

“This can be evaluated only if x2−3x+2 ≥ 0, which happens if x ≤ 1
or x ≥ 2.”

(x ≤ 1, not x ≤ 2; x ≥ 2, not x ≥ 3.)
The second sentence should be

“So the natural domain is (−∞, 1] ∪ [2,∞).”

Page 15 Example 0.4.10: The range of f should be the real numbers, not the
real positive numbers. (The image of f is of course the real positive numbers.)
Speaking of f−1(A) does not require, or even suggest, that A is a subset of the
image of f . As a rule, finding the image of f is difficult, and it would drastically
restrict the language of f−1(A) to make such a requirement.

Page 18 First line: “in this section” should be “in this section and in Ap-
pendix A.1.”

Definition 0.5.1: The least upper bound is also known as the supremum.
Definition 0.5.2: The great lower bound is also known as the infimum.

Page 18 The definition of the truncation [x]k and the discussion in the
following paragraph of one number being larger than another fails to take into
account the non-fractional part. Here is the rewritten version:

We denote by [x]k the number formed by keeping all digits to the left of and
including the 10−k column and setting all others to 0. Thus if x = 5 129.359 . . . ,
then [x]−2 = 5 100.00 . . . , [x]−1 = 5 120.00 . . . , [x]0 = 5 129.00 . . . , [x]1 =
5 129.30 . . . and so on. To avoid ambiguity, If x is a real number with two
decimal expressions, [x]k will be the finite decimal built from the infinite dec-
imal ending in 0’s; for the number in Equation 0.5.1, [x]3 = 0.350; it is not
0.349.

Given any two different finite numbers x and y, one is always bigger than
the other. This is defined as follows. If x is positive and y is nonpositive, then
x > y. If both are positive, then in their decimal expansions there is a left-
most digit in which they differ; whichever has the larger digit in that position
is larger. If both x and y are negative, then x > y if −y > −x.

Page 19 The proof of Theorem 0.5.3 also fails to take into account the non-
fractional part. The second paragraph of the proof should be replaced by the
following:

Let the kth digit of a number be the digit in the 10−k column. Thus if
k = −2, the kth digit of 237.05 is 2; if k = 0, the kth digit is 7. Since x 6= a,
there is then a smallest j such that [x]j < [a]j . There are 10 numbers that have
the same kth digit as x for k < j and that have 0 as the kth digit for k > j;
consider those that are in [ [x]j , a]. This set is not empty, since [a]j is one of
them. Let bj be the largest such that X ∩ [bj , a] 6= /©; such a bj exists, since
x ∈ X ∩ [[x]j , a].
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Now consider the set of numbers in [bj , a] that have the same kth digit as bj
for k < j+ 1, and 0 for k > j+ 1. Again this is a nonempty set with at most 10
elements, and bj is one (the smallest) of them. Call bj+1 the largest such that
X ∩ [bj+1, a] 6= /©. Again such a bj+1 exists, since if necessary we can choose bj .
Keep going this way, defining numbers bj+2, bj+3, and so on, and let b be the
number whose nth decimal digit (for all n) is the same as the nth decimal digit
of bk. We claim that b = supX.

Page 20 Last line of the proof of Theorem 0.5.7: A − an ≤ A − aN , not
A− an < A− aN .

Page 21 In the first line of the proof of Theorem 0.5.8, the summmand
should be in parentheses:

∑∞
n=1(an + |an|)

Exercise 0.5.1: Exercise 1.6.11 repeats this exercise, with hints.

Page 23 On lines 7–8 we say that sets that can be put in one-to-one corre-
spondence with the integers are called countable.

Two lines before Equation 0.6.4:
“of degree <= 2 with |ai| <= 2”, not “ . . . with ai <= 2”.
At the very bottom of the page we say that “a set A is countable if A ³ N,

and . . . ”. The natural numbers can be put in one-to-one correspondence with
the integers, so there is no actual error, but in subsequent editions we will
change “integers” to “natural numbers”.

Page 24 Second full paragraph: P(E) is called the power set of E.
In the same paragraph, we use the symbol 7→, which is not explained until

page 71. This can be avoided by some rewriting:
Clearly for any set E there exists a one-to-one map f : E → P(E); for

instance, the map f(a) = {a}.
Page 25 Exercise 0.6.6: Our solution does not actually use the hint. You
can use Bernstein’s theorem, but it seems a little harder than proving the result
directly.

Page 31 Exercise 0.7.4: “Of the following complex . . . ,” not “of of . . . .”

Page 32 Exercise 0.7.10: the word “number” should be plural.

Chapter 1

Page 40 In the margin note beginning “The trivial subspace,” the 0 should
be ~0.

Page 45 Sentence immediately before Definition 1.2.4: “I If” should be “If.”

Page 48 Figure 1.2.5: On the right, the final matrix should be A(BC), not
(AB)C.

Page 52 The paragraph immediately before Example 1.2.21 should not be
there; it was printed twice.

Page 57 Exercise 1.2.17 should read “Recall ... what the adjacency matrix
of a graph is” (not “what the adjacency graph of a matrix is”).
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Page 61 In the first paragraph of the remark, the mention of “feedback”
is incorrect. Feedback is compatible with linearity. The end of the paragraph,
beginning with “Nor do linear transformations allow for feedback,” has been
rewritten as follows:

Nor does a linear model of the “price transformation” allow for the possibility
that if you buy more you will get a discount for quantity, or that if you buy even
more you might create scarcity and drive prices up. The failure to take such
effects into consideration is a fundamental weakness of all models that linearize
mappings and interactions.

Page 65 In Theorem 1.3.11, we assumed that the composition T ◦ S is a
linear transformation. We should have stated this as part of the theorem and
then proved it.

Thus the theorem should read

inTheorem 1.3.11 (Composition corresponds to matrix multiplica-
tion). Suppose S : Rn → Rm and T : Rm → Rl are linear transformations
given by the matrices [S] and [T ] respectively. Then the composition T ◦ S
is linear and

[T ◦ S] = [T ][S]. 1.3.13

The proof should begin with a proof of linearity:
The following computation shows that T ◦ S is linear:

(T ◦ S)(a~v + b~w) = T
(
S(a~v + b~w)

)
= T

(
aS(~v) + bS(~w)

)
= aT

(
S(~v)

)
+ bT

(
S(~w)

)
= a(T ◦ S)(~v) + b(T ◦ S)(~w).

Page 71 Exercise 1.3.22 belongs in Section 1.4, as it uses the dot product
and orthogonality.

Page 76 The proof of Theorem 1.4.5 should start with the sentence “If either
~v or ~w is 0, the statement is obvious, so suppose both are nonzero.”

Page 79 Figure 1.4.9: h should be h, the height of the parallelogram.

Page 85 Figure 1.4.12: The arc is misplaced. It should go from h to a, as
shown below.

a

b

c

θ

h
h

y

x

z

Page 93 In Equation 1.5.13, U should be U .

Page 94 Third line: “an incontestably . . . ,” not “a incontestably . . . .”
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Page 98 Definition 1.5.20 of a limit of a function should have concerned
a function f : X → Rm. In the definition, the discussion, and the proof of
Proposition 1.5.21, every f should be f , a should be a, and b should be b.

Page 100 Theorem 1.5.23: We should have specified that U is a subset of
Rn. In Equation 1.5.35, we should have written (hf)(x), not hf(x).

Page 101 Proof of Theorem 1.5.23: since x0 is not guaranteed to be in U ,
we should replace f(x0) by a := limx→x0 f(x) and g(x0) by b := limx→x0 g(x).

Page 101 The notation in the proof of Theorem 1.5.24 is a little mixed up.
The theorem and proof should read

inTheorem 1.5.24 (Limit of a composition). Let U ⊂ Rn, V ⊂ Rm be
subsets, and f : U → V and g : V → Rk be mappings, so that g ◦ f is
defined in U . If y0 := limx→x0 f(x) and z0 := limy→y0 g(y) both exist, then
limx→x0 g ◦ f(x), exists, and

lim
x→x0

(g ◦ f)(x) = z0. 1.5.45

Proof. For all ε > 0 there exists δ1 > 0 such that if |y − y0| < δ1, then
|g(y) − z0| < ε. Next, there exists δ > 0 such that if |x − x0| < δ, then
|f(x)− y0| < δ1. Hence

|g
(
f(x)

)
− z0| < ε when |x− x0| < δ. ¤ 1.5.46

Page 102 Line 3: “the limit does not exist”, not “the limit may not exist”.

Page 103 Margin note, end of first paragraph: “for different values of x0”,
not “for different values of x”.

Theorem 1.5.28 (e): “even if f is not continuous at x0”, not “even if f is not
defined at x0”.

Page 105 The proof of Proposition 1.5.34 should read

Set ~ai =

 a1,i

...
an,i

. Then |ak,i| ≤ |~ai|, so
∞∑
i=1

|ak,i| converges, so by Theo-

rem 0.5.8,
∞∑
i=1

ak,i converges. Proposition 1.5.34 then follows from Proposition

1.5.13.
Last margin note: “Newton’s method,” not “Newton’s method’s.”

Page 106 Third line of proof of Proposition 1.5.35: Sk(I −A) = I −Ak+1,
not Sl(I −A) = I −Ak+1.

Note: One vigilant reader objected to Equation 1.5.60; how do we know that
limk→∞ Sk(I −A) exists? To be perfectly rigorous, we should have written the
equation in the opposite direction, starting with I = I − limk→∞Ak+1; then
each step is justified.

Page 108 Exercise 1.5.12: We must assume u(ε) > 0.
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Page 109 Exercise 1.5.19 belongs with exercises for Section 1.6
Exercise 1.5.20, part (a): n was used with two different meanings. Below we

changed n to k in two places:
(a) Let Mat (n,m) denote the space of n×m matrices, which we will identify

with Rnm. For what numbers a ∈ R does the sequence of matrices Ak ∈
Mat (2, 2) converge as k →∞, when A =

[
a a
a a

]
? What is the limit?

Pages 109–110 Exercise 1.5.21, part (d) and Exercise 1.5.24 are very simi-
lar.

Page 110: In the first line of Section 1.6, “convergence” should be “conver-
gent”.

Page 111 The subheading at the top of the page should be “The existence of
a convergent subsequence in a compact set”, not “the existence of a convergence
subsequence . . . ”.

Page 113 Six lines from the bottom, “the digits 0, 1, 1, 2, 4” should be “the
digits 0, 1, 2, 3, 4”

Page 123 4th line from bottom: “of degree 1 or 2”, not “of degree 1.”

Page 125 Hint for Exercise 1.6.7: “minimum” not “maximum.”

Page 126 It is incorrect to ascribe the motions of a pendulum to feedback.

Page 133 Equation 1.7.19: the 0 in lim ~h → 0 should be bold, since it is a
vector.

Page 137 Equation 1.7.37 should have some parentheses:

lim
h→0

1
h

( f(a+h~v)︷ ︸︸ ︷
(1 + h)(1 + 2h) sin(

π

2
+ h)−

f(a)︷ ︸︸ ︷
(1 · 1 · sin π

2
)
)
.

Page 138 Remark: In several places we wrote
[

2
1

]
when we meant

[
1
2

]
.

The ~v in the expression
[
Df

[
0
0

]]
~v does not belong there. The last half of the

remark should read:
. . . to a step of length

√
5 in the direction

[
1
2

]
. To take a step of length 1 in

that direction, starting at the origin, we would multiply
[
Df

[
0
0

]]
by
[

1/
√

5
2/
√

5

]
,

which has length 1, to get a rate of ascent (at time 0) of 19/
√

5 ≈ 8.5. In which

direction is the function increasing faster,
[

1
2

]
or
[

4
3

]
?

In the footnote, 36/5 ≈ 7.2 should be 36/5 = 7.2.

Pages 140 and 141 The last margin note on page 140 is almost identical
to the first margin note on page 141.

Pages 143 and 145 The running heads at the top of the page should say
“1.7 Differential Calculus,” not “1.6 Four Big Theorems” and “1.8 Rules for
Computing Derivatives.”
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Page 144 Line 4: “by direct computation”, not “by direction computation”.

Page 147 Last line: following the equation, we should perhaps add “i.e., for
every ~h ∈ Rn we have [Df(a)]~h = f(~h).”

Page 149 Long displayed equation after Equation 1.8.15, line 2: in the
denominator at far right, (f(a))2 should be (f(a)). In line 3, the notes in
underbrackets could be more precise:

=
1

|~h|

(
f(a)− f(a + ~h) + [Df(a)]~h(

f(a)
)2

)
− 1

|~h|

(
f(a)− f(a + ~h)(

f(a)
)2 − f(a)− f(a + ~h)

f(a + ~h)
(
f(a)

) )

=
1

|~h|

(
f(a)− f(a + ~h) + [Df(a)]~h(

f(a)
)2

)
︸ ︷︷ ︸

lim as h→0 is 0 by def. of deriv.

− 1

|~h|
f(a)− f(a + ~h)

f(a)︸ ︷︷ ︸
bounded

(
1

f(a)
− 1

f(a + ~h)

)
.︸ ︷︷ ︸

lim as h→0 is 0

Page 149 Next to last margin note: “in all mathematics”, not “in all of all
mathematics”.

Page 151 Equation 1.8.22: in the second matrix on the right side, the second
entry in the third row should be 2, not 1:D(f ◦ f)

( 1
1
1

) =

 0 0 4
−2 1 0

0 2 0

 0 0 2
1 1 0
0 2 0

 =

 0 8 0
1 1 −4
2 2 0

 . 1.8.22

Page 154 Exercise 1.8.10: The function f : R2 → R2 should be the function
f : R2 → R:

Page 157 Parentheses should be added to Equation 1.9.15:

lim
x→0

(
1
2

+ 2x sin
1
x

)
=

1
2
.

Page 161 The = in the first line of Equation 1.9.25 should be ≤.
Exercise 1.9.1 is identical to Example 1.9.4.

Page 165 Exercise 1.22 is identical to Exercise 1.5.19, which in any case
should be in Section 1.6.

Chapter 2

Page 171 Margin note next to Equation 2.1.4: [A~b] should be [A | ~b]. Bot-
tom margin note: to be consistent with later notation, we should write [A | ~b],
not [A , ~b] and [A′ | ~b′], not [A′, ~b′].

Page 172 Theorem 2.1.3: To be consistent with later notation, we should
write [A | ~b], not [A , ~b] and [A′ | ~b′], not [A′, ~b′].

First margin note: [A | b̃], not [Ab̃]
We use the vertical line to avoid confusion with the product A~b. You should

not think that ~b is somehow special as far as row reduction is concerned; the
rules of row reduction apply equally to all the columns of [A | ~b]: the columns
of A and the column ~b.
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Page 176 Exercise 2.1.5, “in the algorithm for row reduction” should be “in
Definition 2.1.1 of row operations”.

Page 178 Margin note: The vector ~b does not contain the solutions.

Pages 178, 179, 181 As for Page 172, to keep notation consistent, various

augmented matrices should have vertical lines, not commas, as in [Ã | ~̃b].

Page 179 In the second line of Theorem 2.2.4, the x should be ~x: A~x = ~b,
not Ax = ~b.

In the remark, we mention linear independence prematurely; it is not dis-
cussed until Section 2.4.

Page 181 In the proof of Theorem 2.2.4, the x should be ~x: A~x = ~b, not
Ax = ~b.

Page 185 Exercise 2.2.6, part (a) should read: “For what values of a does
the system of equations in the margin have a solution?” (not “have a unique
solution”).

Page 188 Part (3) of Definition 2.3.6: “i 6= j”, not 1 6= j.

Page 195 Definition 2.4.5 was perhaps not clear. Here is a rewrite:

inDefinition 2.4.5 (Linear independence). The vectors ~v1, . . . , ~vk ∈ Rn
are linearly independent if every vector in Rn can be written as a linear
combination of ~v1, . . . , ~vk in at most one way, i.e.:

k∑
i=1

xi~vi =
k∑
i=1

yi~vi implies x1 = y1, x2 = y2, . . . , xk = yk.

Page 196 First margin note, 4th line after the matrices: “is upper triangular
with nonzero entries . . . ”, not “is upper triangular form with . . . ”.

Page 205 Exercise 2.4.11 should be with the exercises for Section 2.5.

Page 206 Part (a) of Exercise 2.4.13 was poorly stated. It should be:
(a) For n = 1, n = 2, n = 3, write the system of linear equations which the

a0,n, . . . , an,n must satisfy so that the integral of 1 is exact, the integral of x is
exact, and so on, until you get to xn.

Exercise 2.5.14, part (c): W should be Wt.

Page 212 Corollary 2.5.11: Rather than “i.e., if the kernel is zero” it would
be better to say, “i.e., if the kernel has dimension 0.”

Page 214 In the second box (giving equivalent statements about a one-to-
one linear transformation A : Rn → Rm), statement 6 is incorrect. It should
be:

The row-reduced matrix Ã has no nonpivotal column.

Page 222 The parts of Exercise 2.5.7 are listed as (a), (b), (c), (b). Of
course the second (b) should be (d).
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Page 224 Part (c) of Exercise 2.5.20: “For any vectors ~b ∈ Rn”, not “for
any numbers ~b ∈ Rn”.

There is also an extra period in the margin note.

Page 226 Fourth line of Example 2.6.3: a space is needed between “Example
2.6.2” and “and.”

Page 231 A plus sign is missing from Equation 2.6.18. It should be

v′i = p1,iv1 + p2,iv2 + · · ·+ pn,ivn.

Page 236 Exercise 2.6.3: The four matrices do not form a basis, since
v3 = −v4.

Exercise 2.6.5: After the displayed equation, Φ−1
{v} should be Φ{v}: “so that

Φ{v}


a
b
c
d

 =
[
a b
c d

]
.”

Page 237 Exercise 2.6.11: Aa should be A.

Page 243 In Definition 2.7.4 we should have required that U ⊂ Rn be open.

Page 244 The way Figure 2.7.5 is drawn, the shaded strip seems to end in
quadrants 2 and 4; actually, it is infinite. The following may suggest reality
better:

A

A

x

y

Page 246 In Example 2.7.11, we use a different order for the subscripts of c
than that given in Proposition 2.7.10. To make the text consistent, c2,2,1 should
be c1,2,2 and c1,1,2 should be c2,1,1:

|D2D2f1| ≤ 3A = c1,2,2︸ ︷︷ ︸
bound for
|D2D2f1|

and |D1D1f2| ≤ 3A = c2,1,1︸ ︷︷ ︸
bound for
|D1D1f2|

with all others 0, so √
c21,2,2 + c22,1,1 = 3A

√
2. 2.7.40

Page 246 Four lines from the bottom– one reader wondered whether “blun-
derbuss” was “a new word from generation X”. Our dictionary defines a blun-
derbuss as an “old-fashioned, short gun with large bore and flaring mouth, used
for scattering shot at close range”. It will hit a big target, but is not precise.
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Page 249 Statement of Theorem 2.7.13: in the next-to-last line, it should
be “has a unique solution in the closed ball U0”. To see why this is necessary,
consider Example 2.8.1, where Newton’s method converges to 1, which is not
in U0 but is in its closure.

In the bottom margin note, we discuss the importance of making sure both
sides of an equation have the same units. In chemical engineering, fluid me-
chanics, etc., this is called “dimensional analysis.”

Page 250 At the end of Equation 2.7.55 we should write < 1.2, not < 2:∣∣∣[D~F (a0)]−1
∣∣∣2= 1

(cos 2− 1)2

(
(cos 2)2+1+ (1− cos 2)2

)
∼ 1.1727 < 1.2, 2.7.55

Equation 2.7.56 contains several errors. In the second rows of the matrices
on the right, two minus signs should be pluses. In the third line of Equation
2.7.56, the first = in the last line should be ≤, the 4 under the square root
should be 8, and the 2 after the second = should be 2

√
2.

The equation should be:∣∣∣[D~F
(
x1
y1

)]
−
[
D~F

(
x2
y2

)]∣∣∣ =
∣∣∣∣[− sin(x1 − y1) + sin(x2 − y2) sin(x1 − y1)− sin(x2 − y2)

cos(x1 + y1)− cos(x2 + y2) cos(x1 + y1)− cos(x2 + y2)

]∣∣∣∣
≤
∣∣∣∣[ | − (x1 − y1) + (x2 − y2)| |(x1 − y1)− (x2 − y2)|
|(x1 + y1)− (x2 + y2)| |(x1 + y1)− (x2 + y2)|

]∣∣∣∣
≤
√

8
(
(x1 − x2)2 + (y1 − y2)2

)
= 2
√

2
∣∣∣(x1
y1

)
−
(
x2
y2

)∣∣∣ . 2.7.56

(Going from the second to the third line of Equation 2.7.56 uses (a + b)2 ≤
2(a2 + b2).)

Page 251 In the first line, M = 2
√

2, not M = 2.
Equation 2.7.57 should be:

|~F (a0)|
∣∣∣[D~F (a0)]−1

∣∣∣2M ≤ .1 · 1.2 · 2√2 ≈ .34 < .5. 2.7.57

Page 253 As on page 246, the order of subscripts for c is wrong in three
places at the bottom of the page. Below, the starred entries have been corrected:

sup |D1D1f1| ≤ 3 = c1,1,1 ∗ sup |D1D1f2| = 0 = c2,1,1

sup |D1D2f1| ≤ 1 = c1,2,1 ∗ sup |D1D2f2| = 0 = c2,2,1

∗ sup |D2D2f1| ≤ 1 = c1,2,2 sup |D2D2f2| = 2 = c2,2,2.

Page 255 Exercise 2.7.3 involves showing that a function is Lipschitz, but
we did not actually define a Lipschitz function in the text. If X ⊂ Rn, then a
mapping f : X → Rm is Lipschitz if there exists C such that∣∣f(x)− f(y)

∣∣ ≤ C|x− y|.

(Of course a Lipschitz mapping is continuous; it is better than continuous.)

Page 256 The margin note about Exercise 2.23 belongs on page 288.
Exercise 2.7.11 is missing part (b): Prove that this Newton’s method con-

verges.
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Page 260 There should be no vector ~v in Definition 2.8.6. The definition
should read

inDefinition 2.8.6 (The norm of a linear transformation). Let A :
Rn → Rm be a linear transformation. The norm ‖A‖ of A is

‖A‖ = sup |A~x|, when x ∈ Rn and |~x| = 1. 2.8.11

Page 261 On the second line of Example 2.8.9 we say that the norm is
1+
√

5
2 ; in Equation 2.8.8 we compute the norm as

√
3+
√

5
2 . Both, of course, are

correct, since √
3 +
√

5
2

=

√
6 + 2

√
5

4
=

1 +
√

5
2

.

Page 264 Exercise 2.8.8: In the displayed equation, D should be D2:

‖A‖ =

(
|A|2 +

√
|A|4 − 4D2

2

)1/2

.

Fourth line from bottom: “mainly” should be “namely”.

Page 265 First sentence after Theorem 2.9.2: Exercise A.7.1, not 7.1.

Page 270 We never proved Equation 2.9.13! Moreover, it is wrong, which
shows how dangerous it is to omit proofs. The correct equation is

R1 = R|L−1|2
(√
|L|2 +

2
|L−1|2 − |L|

)
.

Proof. Suppose |x− x0| < R1. Then

|f(x)− f(x0)| ≤ |x− x0| sup |[Df(x)]| ≤ R1 sup |[Df(x)]|.
We find a bound for |[Df(x)]|:

|[Df(x)]− [Df(x0)]| = |[Df(x)]− L| ≤︸︷︷︸
Eq. 2.9.11

1
2R|L−1|2 |x− x0| ≤

R1

2R|L−1|2
so

|[Df(x)]| ≤ |L|+ R1

2R|L−1|2 , i.e., sup |[Df(x)]| = |L|+ R1

2R|L−1|2 .

Therefore (remember that R is the radius of V , the domain of g) we want to
find the largest R1 satisfying

R ≥
(
|L|+ R1

2R|L−1|2
)
R1.

The right-hand side is 0 when R1 = 0 and then increases as R1 increases, so we
want the largest value of R1 for which the inequality is an equality. Thus we
want to solve the quadratic equation

R2
1 + 2R|L−1|2 |L|R1 − 2R2|L−1|2 = 0,

11



which gives

R1 = R|L−1|2
(
−|L|+

√
|L|2 +

2
|L−1|2

)
.

Page 271 At the end of the first paragraph after Figure 2.9.6: “look at
condition (3a) of the theorem” should be “look at condition (1) of the theorem.”
In the next paragraph, “condition (3b) is more delicate” should be “condition
(2) is more delicate.”

Page 271 Last line: “an inverse function,” not “a inverse function.”

Page 273 In the first line after Equation 2.9.18, the reference to Equation
2.9.24 should be to Equation 2.9.11.

Pages 277, 278 The margin note about Equation 2.9.30 (page 277) should
be on page 278.

Page 280 The second margin note is completely false; we have no idea what
we were thinking of. Using the second partial derivative method in Example
2.9.15 is perfectly possible and gives a Lipschitz ratio of 2

√
3.

Page 281 Second line: “diagonal matrices” should be “diagonal entries.”

Page 284 In Execise 2.9.4, the matrix
[
−3 0

0 3

]
should be

[
−3 0

0 −3

]
. This

matrix appears three times.

Page 286 The parts of Exercise 2.11 are mislabeled. They should be (a),
(b), (c).

Page 288 The margin note on page 256 about Exercise 2.23 belongs on this
page.

Page 290 Exercise 2.33: in two places, “of degree” should be “of degree at
most”:

“q1 and q2 are polynomials of degrees at most k2 − 1 and k1 − 1”
and
“the space of polynomials of degree at most k1 + k2 − 1.”
(Say we have a polynomial ax2 + bx + c. For it to live in a vector space,

we have to allow for the possibility that a = 0. But then it is a first degree
polynomial.) For the second sentence of the exercise, where we discuss p1 and
p2, we don’t have to say “at most” because those are specific polynomials. But
q1 and q2 are variables.

Chapter 3

Page 294 Caption to Figure 3.1.3. We wrote that “the curve in I1× J1 can
also be thought of as the graph of a function expressing x ∈ I1 as a function
of y ∈ J1”, but this is wrong, because we made J1 too big; there are values of
y ∈ J1 that give no values in I − 1.

Page 297 Third line: “variables in terms,” not “variables terms.”

12



Page 300 There are several mistakes in margin notes. In the second line
of the first note, [DF (a)]should be [DF(a)]. The next note has the reverse
problem: the F should be F ; in the case of a curve in the plane, Rn−k = R
and F is the single function F . The last note is wrong; it should read, “More
generally, for an (n− 1)-dimensional manifold in any Rn, . . . ”

Page 305 Line 5 should read: “ . . . good picture of a parametrized curve or
surface” not “ . . . good picture of parametrized the curve or surface.”

Page 307 (comment, not correction) Example 3.1.17: In this interpretation,
γ′(t) is the velocity vector ; it is tangent to the curve at γ(t) and its length is
the speed at which you are traveling at time t.

Page 307 Five lines from the bottom, “The requirement that [Dγ(u)] be
one” should be “The requirement that [Dγ(u)] be one to one,” and

~γ′(t) 6= 0′′ should be ~γ′(t) 6= 0.

Page 308 2nd line of the remark: “may look as though”, not “may looks as
though”.

Page 315 Exercise 3.1.24, 2nd line: “a smooth curve”, not “is a smooth
curve”.

Exercise 3.1.26: we used A both to denote the A(n, n) (the space of an-
tisymmetric n × n matrices) and to denote the matrice A. The matrix A is
n× n.

Page 316 Exercise 3.1.28, part (c): g, not g.
Definition 3.2.1 is not stated correctly. It should be

inDefinition 3.2.1 (Tangent space of a manifold). Let M ⊂ Rn be a k-
dimensional manifold, so that near z ∈M , M is the graph of a C1 mapping f
expressing n−k variables as functions of the other k variables. If z = a+f(a),
then the tangent space to M at z, denoted TzM , is the graph of [Df(a)].

What does z = a + f(a) mean? The point a is in a k-dimensional subset of
Rn; it has n entries but n − k of them are 0. Similarly, f(a) has n entries but
k of them are 0. So we are adding two n-dimensional points to get a third n-
dimensional point. What makes us slightly uneasy is that we aren’t supposed to
add points, just vectors. We would prefer to write z =

(
a

f(a)

)
but that would

be assuming that the k “active” variables comes first, which isn’t necessarily
the case.

Page 317 The title to Example 3.2.2 should be “Tangent line and tangent
space to smooth curve”, not “Tangent line and tangent plane . . . ”.

Page 318 Example 4.2.3, second line of second paragraph: “playing the role
of x” (not x1).

Page 319 Example 3.2.5 refers to Example 3.1.11, but that example con-
cerned a different function. Example 3.2.5 has been rewritten to show that Xc

is a smooth curve for all c:
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The locus Xc defined by x9 +2x3 +y+y5 = c is a smooth curve for all values
of c since the derivative of the function F

(
x
y

)
= x9 + 2x3 + y + y5 is[

DF
(
x
y

)]
= [9x8 + 6x2 , 1 + 5y4],

and 1 + 5y4 is never 0.

Page 320 We should have said that a =

 a
b
c

.

Page 321 Equation 3.2.19 should end with = 0:

[Dj1F(c), . . . , Djn−kF(c)]ẋ + [Di1F(c), . . . , DikF(c)]ẏ = 0.

Page 322 Exercise 3.2.5: parts (a) and (b) not (a) and (c)

Page 325 In the first line after Equation 3.3.10, the reference should be to
Equation 3.3.9 and footnote 7.

Page 326 First line after Equation 3.3.16: “There are 30 such terms” refers
to terms other than the five terms in Equation 3.3.16. Thus there are 35 in all.

Page 332 The first term in the 4th line should have a minus sign:

−4y sin(x+ y2).

Line immediately before Equation 3.3.38: “(−1
3 !)h3

1” should be “(− 1
3! )h

3
1.”

Page 334 Exercise 3.3.6: in part (b), the hypothesis f(−x) = −f(x) should
have been included.

Page 335 Exercise 3.3.14: It’s possible to solve this using partial derivatives
(and a computer), but it’s much easier with the techniques of Section 3.4; the
exercise should be with the exercises for that section.

Page 336 In the main text, Edmund Landau’s dates are given incorrectly.
They are correct in the margin note.

Lines 2 and 3 from bottom: “We will write them only near 0, but by trans-
lation they can be written at any point where the function is defined” (not “
. . . they can be written anywhere”).

Page 337 The first margin note suggests, incorrectly, that all odd functions
and all even functions have Taylor polynomials. It should read

“The Taylor function of an odd function can have only odd terms, and the
Taylor function of an even function can have only even terms.”

Page 340 Equation 3.4.17 should include = 0:

F

(
x
y

)
= x3 + xy + y3 − 3 = 0.

Page 342 Exercise 3.4.4 should read
Find numbers a, b, c such that when f is C3,

h
(
af(0) + bf(h) + cf(2h)

)
−
∫ h

0

f(t) dt ∈ o(h3).

14



(If you omit the factor h, then a, b, c are not numbers, but multiples of h.)
Exercise 3.4.5 should read
Find numbers a, b, c such that when f is C3,

h
(
af(0) + bf(h) + cf(2h)

)
−
∫ 2h

0

f(t) dt ∈ o(h3).

Page 343 In the third line, the equality sign should be raised: “But p(x) =
x1x2x3” (not But p(x)=x1x2x3” ).

In the displayed equation in the margin, Q(t) should be Q(f):

Q(f) =
∫ 1

0

(f(x))2 dx.

The bottom margin note is incorrect; the theorem is due to Fermat but it is
not Fermat’s little theorem.

Page 345 Equation 3.5.6 should have a “plus or minus”:

√
ax+

b

2
√
a

= ±
√
b2 − 4ac

4a
.

Page 347 The margin note halfway down the page should specify a quadratic
form on Rn:

“Definition 3.5.9 is equivalent to saying that a quadratic form on Rn is pos-
itive definite if its signature is (n, 0) and negative definite if its signature is
(0, n).”

A quadratic form on Rn with signature (k, 0), k < n, is not positive definite.
Margin note beginning “Definition 3.5.9 is equivalent”: Exercise 3.5.7 con-

cerns only positive definite quadratic forms.
The last margin note, about Q(p), should be on page 343.

Pages 348–349 In several places – Equations 3.5.23, 3.5.25, and 3.5.28, and
in the sentence before Equation 3.5.25 – we write things of the form α1(x)2

which would be better written with an additional set of parentheses: (α1(x))2.

Page 351 Exercise 3.5.1: “and finally the terms in x,” not “ . . . in y.”

Page 356 Last margin note: This is true for a quadratic form on Rn.

Page 357 First margin note: This is true for a quadratic form on Rn.

Page 360 Exercise 3.6.5, part (a) should read

(a) Find the critical points of the function f

x
y
z

= xy + yz − xz + xyz.

Page 362 There should be a 4 to mark the end of Example 3.7.3.

Page 363 The caption to Figure 3.7.2: unnecessary comma in the first line.

Page 365 The 4 at the end of the caption should be on the next page, at
the end of the example.

Page 366 Third paragraph of Example 3.7.6: The reference should be to
Definition 3.1.16, not 3.1.18.
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Page 367 Margin note immediately after the figure caption: “manifold,”
not “manifolds.”

Page 368 Example 3.7.9 contains various errors. It should read as follows:

Example 3.7.9 (Critical points of functions constrained to ellipse).
Let us follow this procedure for the function f(x) = x2 + y2 + z2 of Example
3.7.4, constrained as before to the ellipse given by

F

x
y
z

 =
(
x2 + y2 − 1

x− z

)
= 0. 3.7.19

We have

[Df(a)] = [2x, 2y, 2z], [DF1(a)] = [2x, 2y, 0], [DF2(a)] = [1, 0,−1],

so Theorem 3.7.7 says

[2x, 2y, 2z] = λ1[2x, 2y, 0] + λ2[1, 0,−1], 3.7.20

which gives

2x = λ12x+ λ2, 2y = λ12y + 0, 2z = λ1 · 0− λ2. 3.7.21

If y 6= 0, this gives λ1 = 1, λ2 = 0, and z = 0. The equations F1 = 0 and

F2 = 0 then say that x = 0, y = ±1, so

 0
1
0

 and

 0
−1

0

 are critical points.

But if y = 0, then F1 = 0 and F2 = 0 give x = z = ±1. So

 1
0
1

 and

−1
0
−1

,

with λ1 = 2 and λ2 = ∓2, are also critical points.
Since our constraint is a compact manifold, the maximum and minimum

values of f restricted to F = 0 are attained at constrained critical points of

f . Since f

 0
1
0

 = f

 0
−1

0

 = 1 and f

 1
0
1

 = f

−1
0
−1

 = 2, we see that

f achieves its maximum value of 2 at

 1
0
1

 and at

−1
0
−1

 and its minimum

value of 1 at

 0
1
0

 and

 0
−1

0

. 4

Page 370 There should be a 4 to mark the end of Example 3.7.11.

Page 372 First paragraph: “the principal axis theorem,” not “the principle
axis theorem.”

Page 374 Theorem 3.7.16 should read
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inTheorem 3.7.16. A quadratic form QA has signature (k, l), if and only if
A has k linearly independent eigenvectors with positive eigenvalues and l
linearly independent eigenvectors with negative eigenvalues.

The last margin note should refer to Equation 3.7.55 (not 3.7.54) and should
be on the next page.

Page 375 Last margin note: The hint is for both parts of Exercise 3.7.7,
not just part (b).

Page 376 Exercise 3.7.8: For a, b ≥ 0.
Exercise 3.7.11: the parts are mislabeled: (d) should be (c), etc.
Exercise 3.7.13: “closest to and furthest from”, not “closest and furthest

from”.
Exercise 3.7.14: We should have said “the unit circle”.

Page 378 Equation 3.8.5: g(X), not g(x).

Page 379 Example 3.8.3, next to last line: the curvature 2
5
√

5
is about 0.179,

not 0.896. (We had put the
√

5 in the numerator.) We have redone Figure 3.8.2
below.

1

1

1/2

Figure 3.8.2. At

(
1
1

)
, which corresponds to a = 1, the parabola given by y =

x2 looks much flatter than the unit circle. Instead, it resembles a circle of radius

5
√

5/2 ≈ 5.59. (A portion of such a circle is shown. Note that it crosses the parabola.

This is the usual case, occurring when, in adapted coordinates, the cubic terms of the

Taylor polynomial of the difference between the circle and the parabola are nonzero.)

At the origin, which corresponds to a = 0, it has curvature 2 and resembles the circle

of radius 1/2, which also has curvature 2. “Resembles” is an understatement. At the

origin, the Taylor polynomial of the difference between the circle and the parabola

starts with fourth-degree terms.

Page 383 The sentence following Definition 3.8.8 should be: Exercise 3.8.3
asks you to show that the absolute value of the mean curvature of the unit
sphere is 1 and that the Gaussian curvature of the unit sphere is 1.
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Page 384 Caption for Figure 3.8.6: The discussion of the second and third
goats should read

“The second goat is thin. He lives on the top of a hill, with positive Gaussian
curvature; he can reach less grass. The third goat is fat. His surface has negative
Gaussian curvature; with the same length chain, he can get at more grass. This
would be true even if the chain were so heavy that it lay on the ground.”

Page 385 Proposition 3.8.9 does not apply to a surface known in “best”
coordinates, where the Taylor polynomial starts with quadratic terms; in that
case the linear terms a1 and a2 would be 0.

Page 387 Equation 3.8.42: The numerator should be 4(a2 − b2).

Page 392 The fourth line of Equation 3.8.68 should be

=
(
−
(
κ
(
s(t)

))2(
s′(t)

)3 + s′′′(t)
)
~t(s(t))

For consistency, the last line of Equation 3.8.68 should be ~b
(
s(t)

)
, not ~b.

Page 393 Exercise 3.8.3: show that the absolute value of the mean curvature
of the unit sphere is 1 and that the Gaussian curvature is 1.

Page 394 In the hint for Exercise 3.8.11, we neglected to define SO(3). It
is the space of orthogonal 3× 3 matrices with determinant +1. (Recall that an
orthogonal n× n matrix is a matrix whose columns form an orthonormal basis
of Rn.)

Page 398 Exercise 3.21, part (a): 2d cosϕ should be 2ad cosϕ:

a2 + d2 − 2ad cosϕ = b2 + c2 − 2bc cosψ.

Chapter 4

Page 402 Six lines from the bottom, in the statement labeled (2): “exists”,
not “exits”.

Page 411 We should have included in this section the following statement
about how volume scales, for an arbitrary subset of Rn:

inProposition (Scaling volume). If A ⊂ Rn has volume and t ∈ R, then
tA has volume and voln(tA) = tn voln(A).

Proof. By Proposition 4.1.19, this is true if A is a parallelogram, in particular
if A is a cube C ∈ DN . Assume A is any subset of Rn. For any N , let fN be
the function that is the constant function 1 on cubes in DN that are completely
inside A, and let gN be the function that is the constant function 1 on cubes in
DN that completely cover A:

fN =
∑

C∈DN,
C⊂A

χC , gN =
∑

C∈DN,
C∩A6=/©

χC ,

so that fN ≤ χA ≤ gN . Then

fN (tx) ≤ χA(tx) = χtA(x) ≤ gN (tx).
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By Proposition 4.1.19,

∫
fN (tx) =

∑
C∈DN,
C⊂A

∫
χC(tx) =

∑
C∈DN,
C⊂A

voln tC︷ ︸︸ ︷∫
χtC(x) =︸︷︷︸

Prop.4.1.19

tn
∑

C∈DN,
C⊂A

voln C︷ ︸︸ ︷∫
χC(x) = tn

∫
fN (x).

(We omitted the |dnx| in the integrals above in hopes of making the equation
more readable.) Similarly,

∫
gN (tx) = tn

∫
gN (x). Thus

tn
∫
fN (x) =

∫
fN (tx) ≤ L(χta) ≤ U(χtA) ≤

∫
gN (tx) = tn

∫
gN (x).

Since A has volume,

lim
N→∞

tn
∫
fN = lim

N→∞
tn
∫
gN = tn volnA,

so, in particular, for any ε > 0,

U(χtA)− L(χtA) < ε,

so U(χtA) = L(χtA), so χtA is integrable, and

voln(tA) =
∫
χtA = tn voln(A).

¤
Page 412 In Exercise 4.1.5, part (d) and Exercise 4.1.6, part (c), a should
be positive: 0 < a < b.

Page 413 Exercise 4.1.14: Since the geometric mean for negative numbers
is problematic, it would be better to define f as follows:

f(x) =
{

0 if x /∈ [0, 1], or x is rational

1 if x ∈ [0, 1], and x is irrational.

Page 416 Note: The statement that an outcome with probability 0 will
not occur may seem to contradict the statement, in the subsequent discussion
of infinite, continuous sample spaces, that in such a setting “each individual
outcome has probability 0.” There is actually no contradiction. When a sample
space is infinite, an individual outcome cannot occur because it is physically
meaningless. We can think of spinning a bottle so that it ends up at exactly
angle π/2, but we could never measure such a result. So, although it may seem
obvious that each time we spin the bottle it lands on some angle, we really
should think of it as landing within some measurable range of angles. It may
seem peculiar that an infinite number of outcomes each with probably 0 can
add up to something positive (in this case, 2π), but it is the same as the more
familiar notion that a line has length, while the points that compose it have
length 0.

Page 417 Margin note, third line from the bottom: “introducing them”.

Page 418 2nd line after Equation 4.2.9: “intersects,” not “intersect.”
Line above Equation 4.2.10:

∫ π
0

sin θ |dθ| = 2. (It does not equal π.)
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Page 419 Margin note, line 4: “to 20 feet,” not “to20 feet.”

Page 420 Line 8: there is an extra period after “data.”

Page 421 Equation 4.2.15: this sums to 2, not 4/3! So in the next sentence,
it should be “any sum smaller than $2 . . . ”

We get the result 2 as follows:
For |x| < 1, we have

∞∑
n=1

xn =
1

1− x, so
∞∑
n=1

nxn−1 =
1

(1− x)2
,

which gives
∞∑
n=1

nxn =
x

(1− x)2
,

which gives
∞∑
n=1

n · 1
2n

=
1/2

(1/2)2
= 2.

Page 422 Definition 4.2.12 of variance: There is an unfortunate typo in
Equation 4.2.17; a µ(x) was omitted on the right-hand side. The equation
should be

Var (f) = E
((
f − E(f)

)2) =
∫
S

(
f(x)− E(f)

)2
µ(x)|dkx|.

Page 424 In Equation 4.2.25, the −t2 in the exponent should be −x2:

µ(x) =
1√
2π

e−x
2/2.

Page 426 In the margin note about the error function, the 2π on the left
should be

√
2π:

1√
2π

∫ a

0

e−
t2
2 dt =

1
2

erf
(
a√
2

)
.

Page 428 Exercise 4.2.5: The sample space is all of R. Part (a) should have
(x) at the end:

µ(x) =
1
2a
χ[−a,a](x)

Part (b) should be with the chapter review exercises, as it uses material from
Section 4.11.

Page 429 Caption to Figure 4.3.2, last sentence: “region is black”, not
“region of is black”.

Page 431 We are not consistent in our use of notation for graphs. In Def-
inition 3.1.1 and on this page we use Γ(f), but on page 433 we use Γf and on
page 778 we use gr(f).
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Page 436 First line of second paragraph: “in Definition measuredef” should
be “in Definition 4.4.1.”

Page 436 In Definition 4.4.1 (and in other definitions in the text), “if and
only if” is not necessary. Mathematical definitions (unlike definitions in or-
dinary language) are always unambiguous. However, there are other ways to
define measure 0; if one used a different definition, the statement of Definition
4.4.1 would still be true, but it would be a proposition, requiring proof, and the
“if and only if” would be needed.

Page 437 In the last line of the proof of Theorem 4.4.3, the second equation
should be ∑

i,j

volBi,j ≤ ε

(not volX1 ∪X2 ∪ · · · ≤ ε).
Page 438 p.438 Line 10: Example 4.3.3, not 4.4.2:

. . . unlike the function of Example 4.3.3, which, as far as we know, is only
a pathological example, devised to test the limits of mathematical statements.

Page 440 Second paragraph of the proof of Lemma 4.4.6: |xj − yj |, not
|f(xj)− f(yj)|:

“Since |xj − yj | → 0 as j →∞, the subsequence yjk also converges to p.”
The next paragraph would perhaps be clearer if the first sentence were:
“The function f is certainly not continuous at p, so p has to be in a particular

box, which we will call Bp.”

Page 441 We should perhaps have reminded readers that ∃ means “there
exist.” The symbol was used in Section 0.2.

Page 454 Exercise 4.5.17, part (a): “Let Mr(x) be the rth smallest . . . ”,
not “Let Mr(x) be the rth largest . . . ”.

Page 459 In Equation 4.6.14, the sum on the right should start at i = 1,
not i = −k: ∫ 1

−1

f(x) dx ≈
k∑
i=1

wi
(
f(xi) + f(−xi)

)
,

Page 465 Exercise 4.6.2: for k = 1, we meant the initial conditions to be
x1 = .7 and x2 = .5 (not x1 = 17 and x2 = .57).

Page 467 Definition 4.7.2: We should have specified a bounded subset and
a finite collection:

inDefinition 4.7.2 (A paving of X ⊂ Rn). A paving of a bounded subset
X ⊂ Rn is a finite collection P of subsets P ⊂ X such that

∪P∈PP = X, and voln(P1 ∩ P2) = 0 (when P1, P2 ∈ P and P1 6= P2).
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Page 468 In Definition 4.7.4 we use “diam” for “diameter,” but we don’t
define it until page 487, just after Equation 4.9.9.

Page 468 At present, Theorem 4.7.5 requires f to be integrable. In a future
edition, we will change Theorem 4.7.5 to something like

inTheorem 4.7.5 (Integrals using arbitrary pavings) . Let X ⊂ Rn be a
bounded subset, and PN be a nested partition of X. Suppose the boundary
∂X satisfies voln(∂X) = 0. Then f : Rn → R is integrable if and only if the
upper and lower limits using the nested partition are equal:

lim
N→∞

UPN (f) = lim
N→∞

LPN (f). 4.7.4

In that case, they are both equal to∫
X

f(x) |dnx|. 4.7.5

This will solve some problems with the current proof of Theorem 4.9.1.

Page 472 Last margin note: Definition 2.1.11 does not exist. Column op-
erations are defined by replacing the word “row” in Definition 2.1.1 of row
operations by the word “column”.

Page 475 The last margin note should be on page 476.

Page 478 Equation 4.8.36: Note that when we write this permutation as
(2, 3, 1) we are simply dropping the left-hand side, which carries no information.

Conflicting “shorthand” notation for permutations exist. As we describe it,
the notation (3, 1, 2) means that the first entry goes to third place, the second
goes to first, and the third goes to second. But (3, 1, 2) is often interpreted as
the cyclical permutation “third goes to first, which goes to second, which goes
back to third”: 3→ 1→ 2→ 3 . . . .

In this cyclical notation, the permutation

 1
2
1

 7→
 3

2
1

, which leaves the

second entry unchanged, would be written (3, 1), i.e., 3→ 1→ 3. The permu-
tation that we would write (3, 5, 1, 4, 2) would be written (1, 3)(2, 5), or possible
(13)(25).

Page 478 Definition 4.8.15: We regret not having stated explicitly that
sgn(σ ◦ τ) = sgnσ sgn τ :

sgn(σ ◦ τ) = detMσ◦τ = det(MσMτ ) = detMσ detMτ = sgnσ sgn τ.

It was to get this equation easily that we defined the signature as we did, in
terms of the determinant, which we had already defined in terms of its prop-
erties. The standard approach is to define the determinant in terms of the
signature (turning Theorem 4.8.17 into a definition). This makes it excruciat-
ing to prove that sgn(σ◦τ) = sgnσ sgn τ , in order to get detA detB = det(AB).
Of course, in mathematics, when you remove a difficulty in one place, it typi-
cally springs up someplace else; with our definition of the determinant, proving
existence was not easy.
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Page 480 In two places in the first line after Equation 4.8.44, sgn(σ) should
be sgn(σ′): “and the result follows from sgn(τ−1 ◦ σ′) = sgn(τ−1)

(
sgn(σ′)

)
=

− sgn(σ′), since . . . ”

Page 481 First line after Definition 4.8.19: one too many “is.”

Page 484 Hint for Exercise 4.8.7: This hint is not actually used in the
solution. Using the hint, one could write the following for part (a):

det |~a1, . . . , ~0, . . . , ~an| = det |~a1, . . . , 2~0, . . . , ~an| = 2 det |~a1, . . . , ~0, . . . , ~an|,

which implies that the determinant must be 0.

Page 485 Last line of first paragraph: “volume of the parallelepiped,” not
area.

Page 488 In the equation following Equation 4.9.12, the left-hand side
should be

UT (DN )(χT (A))− LT (DN )(χT (A));

the upper and lower sums are with respect to the nested partition T (DN ).

Page 494 Discussion after Proposition 4.10.3: The reference should be to
Corollary 4.3.10, not to Theorem 4.3.9. (That theorem concerns integrability,
not the actual integral.)

Page 496 Last margin note: The sentence “At ϕ = −π/2 and ϕ = π/2,
r = 0” should be deleted.

Page 502 Line 5: “in this case we can solve xy = u”, not “in this case we
can solve y = u/v”.

Page 502 Bottom margin note: we mean to write Exercise 4.10.4, not 4.5.19.

Page 503 Exercise 4.10.3: This exercise should read
“Show that in complex notation, with z = x+ iy, the equation of the lemnis-

cate of Figure 4.10.3 can be written |z2 − 1
2 | = 1

2 . Hint: See Example 4.10.19.”
The equation given in the text is the equation for a different lemniscate.

Page 508 Caption: “first good fortune,” not “first good fortunate.”

Page 509 End of last margin note: “except on a set of measure 0”, not
“except on a measure 0.”

Page 509 Theorem 4.11.8 should really come before Definition 4.11.7. The
proof of the theorem is not correct; the main idea is right but there is a fiddly
problem with the truncations. Here is the rewritten proof:

Proof of Theorem 4.11.8. Set hk = fk − gk, and Hl =
∑l
k=1 hk. The

functions Hl form a sequence of Riemann-integrable functions converging to 0
except on a set of measure 0; if in addition they all have support in BR(0) and
|Hl| ≤ R for all l, then Hl meets the conditions for fk in Theorem 4.11.4, so

lim
l→∞

∫
Rn
Hl(x) |dnx| = 0 i.e., lim

l→∞

l∑
k=1

∫
Rn
hk(x) |dnx| = 0, 4.11.18
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proving the result. We will reduce the general case, where Hl is not bounded
with bounded support, to this one, by appropriately truncating the Hl.

Choose ε > 0 and choose M such that
∞∑

k=M+1

∫
Rn
|hk(x)||dnx| < ε, 4.11.19

so that for l > M we have∫
Rn
|Hl(x)−HM (x)||dnx| ≤

l∑
k=M+1

∫
Rn
|hk(x)||dnx| ≤

∞∑
k=M+1

∫
Rn
|hk(x)||dnx| < ε.

Next choose R such that sup |HM (x)| < R/2 and HM (x) = 0 when |x| ≥ R.
We will define the R-truncation of Hl by the formula

[Hl]R = sup
(
−RχBR(0), inf

(
RχBR(0), Hl

))
; 4.11.20

i.e., replace Hl(x) by 0 if |x| > R, by R if Hl(x) > R, and by −R if Hl(x) < −R,
as shown in Figure 4.11.1b.

R

-R

BR(0)

Figure 4.11.1b. The thin line shows the graph of f , and the dark line shows

inf(RχBR(0), f). Next we take the sup of the dark line and −RχBR(0), to get the

thick, light gray line representing [f ]R.

The [Hl]R form a sequence of Riemann-integrable functions all with support
in BR(0) and all bounded by R, and tending to 0 except on a set of measure
0, so, by Theorem 4.11.4,

lim
l→∞

∫
Rn

[Hl]R(x) |dnx| = 0.︸ ︷︷ ︸
main motor of the proof

4.11.21

At this point we have done most of the work (the hard part was proving Theorem
4.11.4). But, for l > M , we still need to deal with the difference Hl − [Hl]R =
(Hl−HM )− ([Hl]R−HM ). We already know that the integral of |Hl−HM | is
less than ε, so we only need to consider the integral of |[Hl]R −HM |. Outside
BR(0) we have HM = 0 and [Hl]R = 0, so∫

Rn−BR(0)

∣∣[Hl]R −HM (x)
∣∣|dnx| = 0. 4.11.22

For the integral of |[Hl]R −HM | inside BR(0), first find N such that UN (|Hl −
HM |) < ε. Then consider the union A of the cubes C ∈ DN (Rn) that intersect

24



BR(0) and where MC(|Hl − HM |) > R/2. These have total volume at most
2ε/R, as shown by the following computation:

ε > UN |Hl −HM | =
∑

C∈DN (Rn)
MC |Hl −HM | voln C ≥

∑
C∈DN (Rn)

C⊂A

MC |Hl −HM | voln C

≥
∑

C∈DN (Rn)
C⊂A

(R/2) voln C = (R/2) volnA.

Let B be the union of the cubes C ∈ DN (Rn) that intersect BR(0) and such
that MC(|Hl−HM |) ≤ R/2; on these, |Hl| ≤ |Hl−HM |+ |HM | ≤ R/2+R/2 =
R, so [Hl]R = Hl. Thus∫

BR(0)

∣∣∣[Hl]R(x)−HM (x)
∣∣∣|dnx| 4.11.23

=
∫
A

∣∣∣[Hl]R(x)−HM (x)
∣∣∣|dnx|+

∫
B

∣∣∣[Hl]R(x)−HM (x)
∣∣∣|dnx|

≤3R
2

voln(A) +
∫
B

∣∣∣Hl(x)−HM (x)
∣∣∣|dnx| ≤ 3ε+ ε = 4ε. ¤

Page 510 Equation 4.11.19: We meant to write the sums with k = m + 1,
not k = m. (But it’s correct as stated; the sums starting with k = m are at
least as big as the sums starting with k = m+ 1, so either way we can go from
the third to the fourth lines of Equation 4.11.21.)

A somewhat more serious issue is that if [fk]R = fk and [gk]r = gk, this does
not imply [fk − gk]R = fk − gk. The simplest way to fix this seems to be to
change Equation 4.11.19, stating explicitly that we are choosing R big enough
so that:

m∑
k=1

fk =
m∑
k=1

[fk]R,
m∑
k=1

gk =
m∑
k=1

[gk]R,
m∑
k=1

fk − gk =
m∑
k=1

[fk − gk]R.

4.11.19
The left side of Equation 4.11.22 should be an absolute value:∣∣∣∣∣

∫
Rn

p∑
k=1

[fk − gk]2R(x) |dnx|
∣∣∣∣∣ < ε. 4.11.22

We perhaps should have said that Equation 4.11.22 uses the dominated con-
vergence theorem. We have

lim
p→∞

∫
Rn

p∑
k=1

[fk−gk]2R(x)|dnx| =︸︷︷︸
dom. converg.

∫
Rn

(
lim
p→∞

p∑
k=1

[fk − gk]2R(x)︸ ︷︷ ︸
0 by hypothesis

)
|dnx| = 0.

Page 511 Line after Equation 4.11.27: “at one point,” not “at one points.”

Page 514 The statement in the margin that “the union of sets of measure
0 has measure 0” is incorrect. It should be “the union of finitely many (or
countably many) sets of measure 0 has measure 0.”

The proof of Proposition 4.11.14 is not correct. It should be as follows:
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Proof. Suppose f =
∑∞
k=1 fk and g =

∑∞
k=1 gk, with all fk, gk R-integrable,

and
∞∑
k=1

∫
Rn
|fk(x)| dx <∞,

∞∑
k=1

∫
Rn
|gk(x)| dx <∞. 4.11.44

Define Fm =
∑m
k=1 fk and Gm =

∑m
k=1 gk, Hm = sup{Fm, Gm}.

The problem is that the hypothesis f ≤
L

g does not imply that for m suf-

ficiently large we have Fm ≤
L

Gm: the inequality might go the other way on

smaller and smaller sets. The solution will be to find new R-integrable functions
hk such that g =

∑∞
k=1 hk, and such that if we set Hm =

∑m
k=1 hk, then indeed

Fm ≤
L

Hm for all m.

Define Hm = sup{Fm, Gm}, and hm = Hm −Hm−1 (where we set H0 = 0).
finally hm = Hm − Hm−1 (where we set H0 = 0). Then certainly Fm ≤ Hm,
and

∞∑
m=1

hm(x) = lim
m→∞

Hm(x) = g(x). 4.11.45

Moreover,

|hm(x)| = |Hm(x)−Hm−1(x)| ≤ sup{|fm(x)|, |gm(x)|} ≤ |fm(x)|+ |gm(x)|.

We see the first inequality as follows. If the sup defining H is given by F

(resp. G) for both m and m−1, clearly hm(x) = fm(x) (resp. hm(x) = gm(x)).
If it is given by F for m and by G for m− 1, then

|hm(x)| = |Fm(x)−Gm−1(x)| ≤ |Fm(x)− Fm−1(x)| = |fm(x)| 4.11.46

and similarly in the fourth case. Thus
∞∑
m=1

∫
Rn
|hm(x)||dnx| ≤

∞∑
m=1

∫
Rn
|fm(x)||dnx|+

∞∑
m=1

∫
Rn
|gm(x)||dnx| <∞.

4.11.47
Finally∫

Rn
f(x)|dnx| =

∞∑
k=1

∫
Rn
fk(x)|dnx| = lim

m→∞

∫
Rn
Fm(x)|dnx|

≤ lim
m→∞

∫
Rn
Hm(x)|dnx| =

∫
Rn
g(x)|dnx|. ¤

Page 514 Proposition 4.11.15: a and b are constants.

Page 516 Theorems 4.11.19 and 4.11.20 are proved in Appendix A.21.

Page 518 In the last line in the margin, the third integral concerns f2, not
f1: ∫

f(x)dx =
∫
f1(x) dx+ i

∫
f2(x) dx.
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Page 520 Equation 4.11.73: An integral is missing on the second line. The
equation should be

lim
h→0

Lf(s+ h)− Lf(s)
h

= lim
h→0

∫ ∞
0

e−(s+h)t − e−st
h

f(t) dt

= lim
h→0

∫ ∞
0

f(t)e−st
e−ht − 1

h
dt

Page 521 Parts (b) of Exercises 4.11.6 and 4.11.7 are too difficult and should
be deleted.

Page 522 Margin note: “not absolutely convergent,” not “not absolutely
convergence.”

Page 526 Exercise 4.27: a sum was omitted from the definition of f . It
should be

f(x) =
∞∑
k=1

1
2k

1√
|x− ak|

.

Chapter 5

Page 530 Definition 5.1.3: How do we know that det(T>T ) ≥ 0, so that√
det(T>T ) makes sense? Here is one justification:
Note that (

(T>T )~v
)
· ~v = (T>T~v)>~v = T~v · T~v > 0.

Denote by A the k × k matrix T>T and let I be the k × k identity matrix, set
0 ≤ t ≤ 1, and consider the matrix

(
tA+ (1− t)I, which we can think of as A

(when t = 1) being transformed to I (when t = 0). Now, for ~v 6= 0, we have(
tA+ (1− t)I

)
~v · ~v = t A~v · ~v︸ ︷︷ ︸

>0

+ (1− t)︸ ︷︷ ︸
≥0

~v · ~v︸︷︷︸
>0

> 0.

This implies that, for 0 ≤ t ≤ 1, ker
(
tA+ (1− t)I = 0 and thus that det

(
tA+

(1 − t)I is never 0 when 0 ≤ t ≤ 1. Since when t = 0, det
(
tA + (1 − t)I = 1,

and when t = 1, det
(
tA+ (1− t)I = detA, it follows that detA > 0.

Page 531 The hint for Exercise 5.1.3 is not used in the solution given in the
solution manual; in addition, it neglects to define T :

T = [~v1, . . . , ~vk].

Here is a solution using the hint:

Set T = [~v1, . . . , ~vk]. Since the vectors ~v1, . . . , ~vk are linearly dependent,
rankT < k. Further, Img T>T ⊂ Img T>, so

rankT>T ≤ rankT> =︸︷︷︸
Prop. 2.5.12

rankT < k.

Since T>T is a k × k matrix with rank < k, it is not invertible, hence its
determinant is 0, so

volk P (~v1, . . . , ~vk) =
√

detT>T = 0.
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Page 534 Equation 5.2.4: a1 should be ai in two places, and the “for
a1, a2, a3, . . . should be omitted:

U =
∞⋃
i=1

(
ai −

1
2N+i

, ai +
1

2N+i

)
. 5.2.4

The next sentence should say “This is an open subset of R . . . ,” not “This is
an open subset of [0, 1] . . . .”

In Equation 5.2.5, the sum should start at n = 1 not = 1. On the righthand
sides of Equations 5.2.5 and 5.2.6, the denominator should be 2N−1, not 2N−2.

Page 537 Middle margin note: z-axis, not x-axis, in “you get the equation
of the surface obtained by rotating the original curve around the x-axis”.

Page 539 In Figure 5.2.4, the top line in the rectangle at right should be
darker.

Page 539 In Theorem 5.2.10 we used the word diffeomorphism without
defining it. A diffeomorphism is a differentiable mapping with differentiable
inverse.

Page 541 Three lines after Equation 5.3.2: “sum them,” not “summ them.”

Page 541 Definition 5.3.1: This definition is not wrong, but it is unfortunate
that we restricted ourselves to this special case instead of defining the integral
of a function over a manifold. In subsequent editions, we will replace this
definition by something like

inDefinition 5.3.1 (Integral with respect to volume, over a manifold).
Let M ⊂ Rn be a smooth k-dimensional manifold, U a pavable subset of
Rk, and γ : U → M a parametrization according to Definition 5.2.3. Let
f : M → R be a function. Then f is integrable over M with respect to
volume if the last integral below exists, and then the integral is∫

M

f(x)|dkx| =
∫
γ(U)

f(x)|dkx|

=
∫
U

f
(
γ(u)

)(
|dkx|

(
Pγ(u)

( −→
D1γ(u), . . . ,

−→
Dkγ(u)

)))
|dku|

=
∫
U

f
(
γ(u)

)√
det([Dγ(u)]>[Dγ(u)]) |dku|. 5.3.3

Such an integral is sometimes referred to as the integral of a density, as
opposed to the integral of a differential form.

If f = 1, the integral above gives the volume of M .
A corresponding change would then need to be made to Proposition 5.3.2

and its proof.
In several examples and exercises we actually use the above definition of

“integral of a function with respect to volume.”

Page 545 Line 2, plural, not singular: “the intersection of the surfaces of
equations”.
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Equation 5.3.26: the second line should end with dθ. Equation 5.3.27: This
equation should not have a dθ at the end. It should have a period.

Page 549 In three places, D2f should be D3f : the last line of Equation
5.3.45 should be

1 + (D1f)2 + (D2f)2 + (D3f)2;

In the second line of Equation 5.3.45, three closing parentheses aren’t opened.
The line should be

= det

 1 + (D1f)2 (D1f)(D2f) (D1f)(D3f)
(D1f)(D2f) 1 + (D2f)2 (D2f)(D3f)
(D1f)(D3f) (D2f)(D3f) 1 + (D3f)2


Equation 5.3.46 should be∫

U

√
1 + (D1f)2 + (D2f)2 + (D3f)2|d3x|,

and the left-hand side of the first line of Equation 5.3.48 should be∫
B0(R)

√
1 + (D1f)2 + (D2f)2 + (D3f)2|d3x|.

Page 550 The caption to Table 5.3.3 would perhaps be clearer as follows:
Computing the volume of the n-dimensional unit ball in Rn, for n = 1, . . . , 5,
and for the n-dimensional unit sphere in Rn+1, for n = 0, 1 . . . , 5. (The 0-
dimensional sphere in R consists of the two points −1 and 1.)

Page 551 Exercise 5.3.2: “Use the result of Exercise 5.3.1 (a)”, not “use
Equation 5.3.1 . . . ”.

Page 552 first margin note: the earth’s circumference, not diameter!
Exercise 5.3.12: The total curvature of a curve C is

∫
C
κ |d1x|.

Page 556 Exercise 5.6: Some subscripts got forgotten, and one superscript
is wrong. It should be:

(a) Show that w′n+1(r) = vn(r).
(b) Show that vn(r) = rnvn(1).

(c) Derive Equation 5.3.49, using wn+1(1) =
∫ 1

0

w′n+1(r) dr.

Chapter 6

Page 561 Definition 6.1.3. “An elementary k-form”, not “A elementary
k-form”.

Page 562 The right side of Equation 6.1.14 should be
k−1∑
i=1

aiϕ(~v1, . . . , ~vk−1, ~vi).

The first term is a1φ(~v1, ..., ~vk−1, ~v1), the second is a2φ(~v1, ~v2, ..., ~vk−1, ~v2),
and so on.
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Page 563 Clarification for Example 6.1.8:
The function W~v(~w) = ~v · ~w is a 1-form on Rn because it is a function

of one vector and it is linear as a function of ~w. The requirement that it be
antisymmetric is automatically satisfied, since it is a function of only one vector.

Page 564 Equation 6.1.23 should be

dxi1 ∧ · · · ∧ dxik(~ej1 , . . .~ejk). 6.1.23

Equation 6.1.24 should be

dxj1 ∧ · · · ∧ dxjk(~ej1 , . . . ,~ejk) = 1. 6.1.24

Page 568 Not an error, but in subsequent editions we plan to add the
following to the first margin note:

If V is k-dimensional, a nonzero element of Ak(V ) will correspond, via Φ{b}
as in Equation 6.1.30, to a nonzero multiple of det ∈ Ak(Rk). In particular, a
nonzero element of Ak(V ) evaluated on k linearly independent vectors always
returns a nonzero number.

Page 569 The last margin note refers to nonexistent parts a) and b) of
Definition 6.1.1. That sentence should read

The wedge product ϕ ∧ ω satisfies the requirements of Definition 6.1.1 for a
form (multilinearity and antisymmetry).

Page 570 Discussion after Definition 6.1.22:
We will assume that these functions are of class at least C2: we will need C1

to define the exterior derivative and C2 for Theorem 6.7.7 to be true.

Page 571 Exercise 6.1.2 (a): dx3 ∧ dx2 ∧ x4 should be dx3 ∧ dx2 ∧ dx4.

Page 580 Caption to Figure 6.3.1: “we choose a tangent vector field”, not
“we choose tangent vector field”.

After Definition 6.3.1, add
If (M,ω) is a manifold oriented by the form ω, then −(M,ω) will refer to M

with the opposite orientation. It follows that −(M,ω) = (M,−ω).

Page 581 Proposition 6.3.5: As written, this proposition assumes that an
appropriate normal vector field can be chosen. Of course, that is not always
the case, as is clear from considering the Moebius strip. The proposition should
read

inProposition 6.3.5 (Orienting a surface in R3). Let S ⊂ R3 be a smooth
surface. In this case TxS is two-dimensional, and an element of the line
A2(TxS) is a 2-form. Suppose there exists a normal vector field ~n, as shown
in Figure 6.3.2: for each x ∈ S we can choose a nonzero vector ~n(x) ∈ TxS

⊥,
such that ~n(x) varies continuously with x. Then S can be oriented by the
2-form field ωx ∈ A2(TxS) given by

ωx(~v1, ~v2) = det[~n(x), ~v1, ~v2], where ~v1, ~v2 ∈ TxS. 6.3.4

30



In the proof, we should write “ωx is not the zero element of A2(TxS),” not
“ωx is not the 0-form”:

Proof. The 2-form ωx is not the zero element of A2(TxS), since if ~v1, ~v2 are
linearly independent and are in TxS, then ~n(x), ~v1, ~v2 are linearly independent,
with nonzero determinant; ωx varies continuously because det[ ~n(x), ~v1, ~v2] is a
polynomial, and (Corollary 1.5.30) polynomial functions are continuous. ¤
Page 582 Proposition 6.3.8: We should have said “Suppose there exists a
normal vector field ~n”, not “Choose a normal vector field ~n”. If no normal
vector field ~n exists, then the manifold is not orientable.

Page 583 In the second line of proof of Proposition 6.3.9, an end parenthesis
is missing: A0({~0}) = R, not A0({~0} = R.

Page 584 In Equation 6.3.9, the second equality is incorrect; the second
determinant is opposite the first. The discussion should read:

. . . so we are looking for either

ωx(~v, ~w)= det


y 0 v1 w1

x 2y v2 w2

w 2z v3 w3

z 0 v4 w4

 or ω′x(~v, ~w) = det


0 y v1 w1

2y x v2 w2

2z w v3 w3

0 z v4 w4

.
6.3.9

These 2-forms are nonzero elements of A2(TxS), i.e., ωx(~v, ~w) = −ω′x(~v, ~w) 6= 0
if ~v, ~w ∈ TxS are linearly independent. The first gives

ωx = −2z2 dx ∧ dy + 2yz dx ∧ dz + (2xz − 2yw) dx ∧ dw
+ 2y2 dz ∧ dw − 2zy dy ∧ dw.

6.3.10

Page 584 The footnote is not well written. It should be replaced by
“A nonzero k-form on a k-dimensional vector space returns 0 when evaluated

on k vectors if and only if the vectors are linearly dependent.”

Page 589 Part (c) of Exercise 6.3.12: The notation is inconsistent. We will
change v1 to v and v2 to w:

(c) Show that given any two linearly independent vectors u1,u2 in Rn, n > 2,
there exist maps v,w : [0, 1]→ Rn such that

v(0) = u1, v(1) = u2, w(0) = u2, w(1) = u1,

and for each t, v(t) and w(t) are linearly independent.

Page 590 Exercise 6.3.17, part (b): The curve C should be smooth.

Page 591 Third margin note: Definition 6.4.2, not 6.4.1.

Page 592 Footnote: “It is never the 0-form” should be “it is never the zero
element of A2(TxS).”

Page 592 We forgot to put a 4 to mark the end of Example 6.4.3.

Page 595 Second line in margin: pullback of ω, not pullback of ϕ.
Margin note half-way down the page: Equation 6.4.20, not 6.4.19.

Page 596 First margin note, third line: there is an extra colon.
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Page 602 The solution to Exercise 6.4.6 uses the formula

eiθ = cos θ + i sin θ.

Justifying this formula uses three statements taught in one-variable calculus
and the fact (Proposition 1.5.34) that absolute convergence implies convergence.
The three statements are the expression of sin t, cos t, and et, for t real, in terms
of power series:

sin t = t− t3

3!
+
t5

5!
− t7

7!
+ · · ·

cos t = 1− t2

2!
+
t4

4!
− t6

6!
+ · · ·

et = 1 + t+
t2

2!
+
t3

3!
+ · · · . (1)

First, let us show that for a complex number z, we can define ez by the power
series

ez = 1 + z +
z2

2!
+ · · · .

Figure 6.5.4.

Corrected figure

We know it is true in the special case where z is real. We need to check that
the series converges. The series 1+ |z|+

∣∣∣ z2

2!

∣∣∣+ · · · converges, since (by Equation
(1): |z| is a real number)

∞∑
k=0

∣∣∣∣zkk!

∣∣∣∣ =
∞∑
k=0

|z|k
k!

= e|z|

converges. So Proposition 1.5.34 says that
∞∑
k=0

zk

k!
converges.

Now write

cos t+ i sin t =
(

1− t2

2!
+
t4

4!
− t6

6!
+ · · ·

)
+ i

(
t− t3

3!
+
t5

5!
−
)

=
(

1 +
(it)2

2!
+

(it)4

4!
+

(it)6

6!
+ · · ·

)
+
(
it+

(it)3

3!
+

(it)5

5!
+
)

= 1 + it+
(it)2

2!
+

(it)3

3!
+

(it)4

4!
+ · · · = eit.

Page 603 Caption for Figure 6.5.2: In two places (the first line and imme-
diately after the displayed equation), x dx+ y dx should be x dx+ y dy.

Page 603 The sentence “the requirement of antisymmetry then says that
f(−Px) = −f(x)” should be deleted.

Page 605 Figure 6.5.4: the vector field should turn clockwise, as shown in
the margin.

Page 606 Line 4: clockwise, not counter-clockwise.
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Page 607 There were two mistakes in Example 6.5.6 The tangent vector

field is

− sin t
cos t

1

, not

− sin t
cos t

0

, and ~γ′(t) is

− sin t
cos t

1

. Thus the first half of

the example should read:

What is the work of the vector field ~F

x
y
z

 =

 y
−x

0

 over the helix oriented

by the tangent vector field

− sin t
cos t

1

, and parametrized by γ(t) =

 cos t
sin t
t

,

for 0 < t < 4π?
The parametrization preserves orientation, since

ω
(
~γ′(t)

)
=

− sin t
cos t

1


︸ ︷︷ ︸

~t(t)

·

− sin t
cos t
1


︸ ︷︷ ︸

~γ′(t)

= 2 > 0. 6.5.13

Page 607 Immediately before Equation 6.5.15: “orientation-preserving”,
not “orientation-preseving”.

Page 609 Last margin note: the signs are reversed in the matrix; it should

be
[

0 −1
1 0

]
.

Page 616 Definition 6.6.2, part (2):
[
D
(

f
g

)(
x
)]

, not
[
D f
g

(
x
)]

Page 618 Immediately before Example 6.6.6 we have added

An oriented piece-with-boundary of a manifold is a piece of an oriented
manifold: the piece inherits the orientation of the manifold. Given X ⊂ (M,ω),
we write −X to denote X as a subset of −M .

Page 619 Caption to Figure 6.6.7, last sentence:
“However, the two-dimensional...”, not “However, that the two-dimensional...”.

Equation 6.6.5 has a misplaced end parenthesis; the first equation should be

g(y) = (y − 0) · ~wi = 0.

Page 619 Example 6.6.7: We changed the second paragraph to read
Let ~v1, . . . , ~vk be linearly independent vectors in Rn. We will show that the

parallelogram P0(~v1, . . . , ~vk) is a piece-with-boundary of the subspace M ⊂ Rn
spanned by those vectors, i.e., M = Sp (~v1, . . . , ~vk).

In doing so we removed the part about f , which we put into the fourth
paragraph:

First we will show that any point that is in a face and is not in any edge
is a smooth point. Choose vectors ~w1, . . . , ~wk in M so that ~wi is orthogonal
to ~v1, . . . , ~̂vi, . . . ~vk; change the sign if necessary, so that ~wi · ~vi > 0. Let
f : Rn → Rn−k be a linear transformation whose kernel is precisely M ; note
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that f is necessarily surjective. Then P0(~v1, . . . , ~vk) is defined by the equalities
and inequalities

Page 622 Last line of Definition 6.6.10: ∂1P should be ∂MP .

Page 622 Notational inconsistency. We use both ω∂ and ω∂ for the form
orienting the boundary. In future printings we will stick with ω∂ .

Page 623 Equation 6.6.16 has a superfluous end parenthesis; it should be

ω∂x(~v) = det
(
~n(x), ~vout, ~v

)
.

Page 623 The first four lines of the new subsection now read
We saw earlier that an oriented k-parallelogram Px(~v1, . . . , ~vk) is a piece-

with-boundary of Sp (~v1, . . . , ~vk) when those vectors are linearly independent.
Since Sp (~v1, . . . , ~vk) is oriented by the order of the vectors, a k-parallelogram is
an oriented piece-with-boundary. As such its boundary carries an orientation.

In addition, we added this as a margin note:
Recall (Proposition 6.3.9) that a 0-dimensional manifold is oriented by the

choice of sign. Thus an oriented 0-parallelogram Px is either +Px or −Px.
(Recall from the remark immediately after Definition 6.3.13 that the description
of orientation in terms of direct bases does not work in the 0-dimensional case.)
Since Px is itself a manifold, its boundary is empty, which is what Proposition
6.6.15 says when k = 0.

Page 626 Exercise 6.6.1: The way this exercise was stated in the first print-
ing was not optimal; it should say:

“Use Definition 5.2.1 to show that a single point in any Rn never has 0-
dimensional volume 0.”

Page 626 Exercise 6.6.5: ~∇ denotes the transpose of the derivative:

~∇f(x) = [Df(x)]>.

For a function f : Rn → R, ~∇f(x) is a vector whereas [Df(x)] is a line matrix.
Note that ~∇f(x0) is orthogonal at x0 to the manifoldX of equation f(x) = 0:

since Tx0X = ker[Df(x0)], if ~v ∈ Tx0X, then

~∇f(x0) · ~v = [Df(x0)]~v = 0.

Page 627 Exercise 6.6.8 should say that M is oriented by dx1 ∧ dx2 ∧ dx3.
In Exercise 6.6.8, “at a point of ∂M” should be “at a point of ∂X”.

Page 629 Last line of Remark 6.7.2: “in higher dimensions”, not “to higher
dimensions”.

Page 631 In the first line of Equation 6.7.14, ϕ should be ψ.

Page 632 In Theorem 6.7.7, we should have said, “For any k-form ϕ of class
C2 . . . .”

Page 633 Second margin note: Theorem 6.7.8, not A6.7.8.

Page 634 Exercise 6.7.6: “Compute the following exterior derivatives,” not
“Compute the exterior following derivatives.”
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Exercise 6.7.7: In part (b), “check the computation in (b)” should be “check
the computation in (a).”

Exercise 6.7.10: “face” rather than “edge” in two places.

Page 635 Note: The formulas for the gradient and the divergence work
in any Rn, but there is no obvious generalization of the curl, other than the
exterior derivative.

Page 636 The last term on the right-hand side of Equation 6.8.5 should be
D3fv3, not D3v3.

Page 639 The geometric interpretation of the curl that is given applies
equally to curlF and − curlF . It should read:

The curl probe. Consider an axis, free to rotate in a bearing that you
hold, and having paddles attached, as in Figure 6.8.2. If you stand this paddle
wheel on a table, paddle end down, next to a clock lying flat on the table, then
the wheel turns clockwise if it follows the motion of the hands of the clock. We
will orient the axis of the probe up, away from the paddle. We will assume
that the bearing is packed with a viscous fluid, so that its angular speed (not
acceleration) is proportional to the torque exerted by the paddles. If a fluid is
in constant motion with velocity vector field ~F , then the curl of the velocity
vector field at x, (~∇× ~F )(x), is measured as follows:

Insert the paddle of the curl probe into the vector field at a point x and
adjust it so that it is spinning counterclockwise the fastest. Then the curl
of the vector field at x points in the direction of axis of the probe. The
speed at which the probe spins is proportional to the magnitude of the
curl.

Page 640 In the margin note, curl ~F should be curl curl ~F . In R3 the
Laplacian is often denoted ∆. Note that ∆ is the dot product ∇ · ∇:D1

D2

D3

 ·
D1

D2

D3

 = D2
1 +D2

2 +D2
3.

Thus ∆ is sometimes denoted ∇2.

Page 642 We omitted part (c) of Exercise 6.8.10:
(c) Compute it again, directly from the definition of the exterior derivative.

Page 642 Part (c) of Exercise 6.8.11 was not clearly stated. We mean that
you should compute them directly from the definition of the exterior derivative.
We strongly recommend doing at least part of part (c).

Page 650 Exercise 6.9.6: We should have specified a, b > 0 and we should
have discussed orientation. Future editions will contain a new part (b):

(b) Show that (x1 dx2 − x2 dx1) ∧ (x3 dx4 − x4 dx3) is an orientation of the
surface. Does your parametrization preserve or reverse orientation?

The current parts (b), (c), and (d) will become (c), (d), and (e).

Page 651 Theorem 6.10.2: “Definition 6.6.13” should be “Definition 6.6.10”.
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Page 657 Exercise 6.10.8 is wrong as written; indeed, it contradicts Exercise

6.10.7. The vector fields should be
[
xy2

0

]
and

[
0
−x2y

]
.

Page 658 Exercise 6.10.15, part (b): “the surface Xp,q of equation zp1 + zq2
should be “the surface Xp,q of equation zp1 + zq2 = 0.”

Page 659 We should have chosen our bicycle trip at the top of the hill;
then it would be clear that if a cyclist starts and ends at the same point, he or
she does no work against gravity. In the absence of friction (including friction
from braking) a cyclist could zoom down one hill and coast back up the next,
without doing any work.

Page 661 Margin note: Equation 6.5.12, not 5.6.1.

Page 662 The function described in Theorem 6.11.5 is unique up to the
addition of an arbitrary constant. Thus the function given in Equation 6.11.24

is not the only potential of the vector field; any function
xy2

2
+ xyz + c, where

c is an arbitrary constant, is also a potential of ~F .

Page 664 Exercise 6.1.3, part (b): “Sketch the potential” should be “sketch
the electric field.”

Page 665 Exercise 6.11: “for the following 1-forms on R2 should be “for the
following 1-forms.”

Page 666 Exercise 6.12: the matrix should be
[

0 −1
1 0

]
. This affects parts

(a) and (b).

Page 667 In Exercise 6.18, part (b), the displayed equation should be

voln
(
Bn1 (0)

)
=

1
n

voln−1(Sn−1).

Appendix A

Page 670 In the first sentence after Definition A1.2, Assoc(x, y) = (x+y)+z
should be Assoc(x, y, z) = (x+ y) + z.

The words “k-close” were omitted from Definition A1.3, which should read

inDefinition A1.3 (k-close). Two points x,y ∈ Rn are k-close if for each
i = 1, . . . , n, then

∣∣[xi]k − [yi]k
∣∣ ≤ 10−k.

Page 671 Exercise A1.2 left out “Assoc(x, y, z) =.” The first sentence of
the exercise should read

“Show that the functions A(x, y) = x + y, M(x, y) = xy, S(x, y) = x − y,
and Assoc(x, y, z) = (x+ y) + z are D-continuous, and that 1/x is not.”

Page 675 Proposition A2.4: By “exactly” we mean “if and only if.” In any
case, “if and only if” is more appropriate here. We tend to use “precisely” (or,
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more rarely, “exactly”) when we mean “if and only if” but where the result is
fairly obvious, which isn’t the case here.

The bottom graph in Figure A2.1 is wrong; it should be:

Page 682 Restatement of Theorem 2.7.13: in the next-to-last line, it should
be “has a unique solution in the closed ball U0”.

Page 691 We corrected Equation 2.9.13 in Section 2.9 (page 270). Of course
it should also be corrected here:

R1 = R|L−1|2
(√
|L|2 +

2
|L−1|2 − |L|

)
. 2.9.13

Appendix A.8 The proof is not as clear as it should be as to why the root
found by Newton’s method is unique in all of W0 and not just in U0. This
question is addressed by part (3) of the proof of the inverse function theorem,
which refers to Remark A5.5 on page 688. Since we treat the implicit function
theorem as a special case of the inverse function theorem, this is relevant. In
any future editions we plan to put the content of Remark A5.5 in Section 2.7,
perhaps immediately after the statement of the Kantorovich theorem.

Page 692 This correction was made in the text files some time ago but we
forgot to include it in the errata files. The proof of Theorem 2.9.7 does not
include a proof of the last statement, concerning Equation 2.9.13. Here is the
missing proof:

Proving Equation 2.9.13

Suppose |x− x0| < R1. Then

|f(x)− f(x0)| ≤ |x− x0| sup |[Df(x)]| ≤ R1 sup |[Df(x)]|. A7.11

We find a bound for |[Df(x)]|:

|[Df(x)]− [Df(x0)]| = |[Df(x)]− L| ≤︸︷︷︸
Eq. 2.9.11

1
2R|L−1|2 |x− x0| ≤

R1

2R|L−1|2
so

|[Df(x)]| ≤ |L|+ R1

2R|L−1|2 , i.e., sup |[Df(x)]| = |L|+ R1

2R|L−1|2 . A7.12

Therefore we want to find the largest R1 satisfying

R ≥
(
|L|+ R1

2R|L−1|2
)
R1. A7.13
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The right-hand side is 0 when R1 = 0 and then increases as R1 increases, so we
want the largest value of R1 for which the inequality is an equality. Thus we
want to solve the quadratic equation

R2
1 + 2R|L−1|2 |L|R1 − 2R2|L−1|2 = 0, A7.14

which gives

R1 = R|L−1|2
(
−|L|+

√
|L|2 +

2
|L−1|2

)
. A7.15

Page 695 Equation A8.6 is wrong. It should be

F
(

g(y)
y

)
= 0.

Page 705 Second line after Equation A11.16: it might be clearer to write
“which satisfy |Qkf,a(~h)| ∈ O(|~h|)”, rather than “so that |Qkf,a(~h)| ∈ O(|~h|).”
Page 707 Equation A12.3 should end with ds, not dt.

Page 723 In the next-to-last line of the paragraph beginning “Fortunately”,
the word “volume” should be “measure”.

Page 724 Corollary A16.3 is wrong. It is correct if we replace “volume” by
“measure.” Seeing why the proof is correct requires the following corollary to
Theorem 4.4.5:

If f and g are integrable functions on Rn, g ≥ f , and
∫
f(x)|dnx| =∫

g(x)|dnx|, then {x | f(x) 6= g)x) } has measure 0.

We propose making this into an exercise, with the hint: Show that if g(x0) >
f(x0) and g−f is continuous at x0, then

∫
g(x)|dnx| >

∫
f(x)|dnx|. Then apply

Theorem 4.4.5.

Page 726 Second line of the proof: replacing f by χXf uses the fact that the
product of two R-integrable functions is integrable. This is proved in Corol-
lary 4.4.8; it also follows from Theorem 4.3.1. (But the product of two L-
integrable functions is not necessarily L-integrable! However, the product of an
L-integrable function by a bounded L-integrable function is L-integrable; see
the lemma – a somewhat weaker statement – discussed in the note for page
754.)

Page 727 In the first line, we write that every x is in some paving tile. It is
possible that x may be in more than one tile. By Corollary 4.3.10, such points
don’t affect integals; however, the definition of g should take such points into
account:

g(x) =


MPN′′ (x)(f) if PN ′′(x) ∩ ∂DN = /© and x is contained in a

single tile

− sup |f | otherwise.

We have also rewritten some of the rest of the page, in hopes of making it
clearer:
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Now we compute the upper sum UPN′′ (f), as follows:

UPN′′ (f) =
∑

P∈PN′′
MP (f) voln P A17.8

=
∑

P∈PN′′ ,
P∩∂DN= /©

MP (f) voln P

︸ ︷︷ ︸
contribution from P

entirely in dyadic cubes

+
∑

P∈PN′′ ,
P∩∂DN 6= /©

(
MP (f) voln P.

︸ ︷︷ ︸
contribution from P that intersect

the boundary of dyadic cubes

We want a statement that relates integrals computed using dyadic cubes and
paving tiles. Since

∑
P∈P χP = 1 except on a set of volume 0,

The sum of characteristic func-
tions is the constant function 1 ex-
cept on a set of volume 0.

∫
Rn
g(x)|dnx| =

∑
P∈P′′N

∫
Rn
g(x)χP (x)|dnx|

=
∑

P∈PN′′ ,
P∩∂DN= /©

MP (f) voln P +
∑

P∈PN′′ ,
P∩∂DN 6= /©

(− sup |f |) voln P.

Note that we can write the last term in Equation A17.8 as

Since MP (f) is the least upper
bound over P while sup |f | is the
least upper bound over Rn, we
have MP (f) + sup |f | ≤ 2 sup |f |.

∑
P∈PN′′ ,

P∩∂DN 6= /©

(
MP (f) voln P =

∑
P∈PN′′ ,

P∩∂DN 6= /©

(
MP (f)

cancels out︷ ︸︸ ︷
− sup |f |+ sup |f |

)
voln P

=
∑

P∈PN′′ ,
P∩∂DN 6= /©

(
− sup |f |

)
voln P +

∑
P∈PN′′ ,

P∩∂DN 6= /©

(
MP (f) + sup |f |

)
voln P.

So we can rewrite Equation A17.8 as

UPN′′ (f) =
∫
Rn
g|dnx|+

∑
P∈PN′′ ,

P∩∂DN 6= /©

≤2 sup |f | (see note in margin)︷ ︸︸ ︷(
MP (f) + sup |f |

)
voln P. A17.11

Pages 742, 743, 745 Each page has “integrable functions” that should be
“R-integrable functions”:

Proposition A21.1: “Let fk : Rn → R be a sequence of R-integrable functions
. . . ”

Corollary A21.2: “Let hk be a sequence of R-integrable nonnegative functions
on Q . . . ”

Proposition A21.3: “Suppose fk is a sequence of R-integrable functions all
satisfying . . . ”

(These statements come in in the course of proving Theorem 4.11.4, which
is a statement about Riemann integrals.)

Page 744 The last sum in Equation A21.8 should have i, not k:
∞∑
i=1

∫
hi|dnx|.
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Page 747 The letter A is in the wrong font in one place (A should be A):
“But this argument requires “measure 0.” To apply it to the case where

A 6= 0 . . . ”

Page 748 Equation A21.26: In the first line, the sums should be over C ⊂ Y0,
not C ∈ Y0. But then we also have to specify that the C are in DN0(Rn). This
gives

voln(Y0)
A

ε
=

∑
C⊂Y0

C∈DN0 (Rn)

A

ε
voln(C) ≤

∑
C⊂Y0

C∈DN0 (Rn)

MC(h0) voln(C)

≤
∑

C∈DN0

MC(h0) voln(C) = UN0(h0) ≤ 2A,

A21.26

In Equation A21.29, hm comes with a + sign and hm+1 with a − sign; it
should be reversed. In the second line, the = should be <. So the equation
should read∫

Rn
gm+1(x)|dnx| =

(∫
Rn
hm+1(x) |dnx| −A

)
−
(∫

Rn
hm(x) |dnx| −A

)
≤ A

4m+3
+

A

4m+2
<

A

2 · 4m+1
. A21.29

Page 749 Equation A21.35 : on the far right, the A in the numerator should
be ε:

voln(Ym+1) ≤ ε2m+1

4m+1
=

ε

2m+1
.

Page 750 Equation A21.39: Writing “for j = 2, . . . ,∞” is fairly standard
but it would be better as “2 ≤ j <∞”; we do not mean to suggest that j =∞.

The equation in the footnote contains mistakes with the absolute value signs
and parentheses. It should be:∫

Rn
|gk,1(x)||dnx| =

∫
Rn

∣∣∣∣∣∣
∞∑
i=1

fk,i(x)−
∞∑

i=m(k)+1

fk,i(x)

∣∣∣∣∣∣ |dnx|

≤
∫
Rn

∣∣∣ ∞∑
i=1

fk,i(x)
∣∣∣|dnx|+

∞∑
i=m(k)+1

∫
|fk,i(x)| |dnx|

≤
∫
Rn
|fk(x)|dnx|+ 1

2k
.

Page 753 Two lines after Equation A21.49 replace “volume 0” by “measure
0” in two places. This uses Corollary A16.3, which has been corrected (it
concerns measure, not volume).

Sentence right after Equation A21.50: third and fourth “equalities”, not
“inequalities.”

Note: In line two of the proof, we are using Fubini for Riemann integrals.
More precisely, Equation A21.49 is true for Riemann integrals if one ignores
sets of measure 0, and so it is true without restriction for Lebesgue integrals.

40



Page 754 Third displayed equation: the bracket on the left should say “finite
because f , hence g, is L-integrable.”

In the paragraph beginning “For the converse”, Rn should be Rn+m; i.e.,
“every closed cube C ∈ D0(Rn) is compact” should be

“every closed cube C ∈ D0(Rn+m) is compact.”
Even with that correction, we were not quite rigorous in arguing that fχC

is L-integrable. Here is another version:
Lemma If f is L-integrable on Rn, and g is an R-integrable function with

0 ≤ g ≤ 1, then fg is L-integrable.

Proof. Since f is L-integrable, we can set f =
∑
k fk with the fk R-integrable

and ∑
k

∫
Rn
|fk(x)| ||dnx| <∞.

We have fg =
∑
k fkg, where fkg is R-integrable; since 0 ≤ g ≤ 1, we have∑

k

∫
Rn
|fkg(x)| ||dnx| ≤

∑
k

∫
Rn
|fk(x)| ||dnx| <∞.

Therefore fg is L-integrable. ¤

Now take a closed cube C ∈ D0(Rn) and cover it by finitely many balls
B1, B2, . . . , BN , over which (by the first hypothesis of the converse) f is L-
integrable. Then we can write

fχC = fχCχB1 + fχCχB2−∪(B2−B1) + · · ·+ fχCχBN−∪N−1
j=1 Bj

By the above lemma, the terms on the right are all L-integrable, so by Propo-
sition 4.11.15, fχC is L-integrable.

Page 755 We claim we are proving the “if” part in the text, leaving “if only”
as an exercise. Actually, it’s the reverse. It would be clearer to use =⇒ and
⇐=. In the text we prove ( =⇒ ) (that if f is L-integrable, then |det[DΦ]|(f ◦Φ)
is L-integrable and the formula is correct).

Margin note: The first and third equalities of Equation A21.59 are appli-
cations of Theorem 4.11.16. In both cases, the hypothesis of that theorem is
satisfied by Equation A21.58. We could add an extra step:∫

V

f(v)|dnv|
Eq.A21.57︷︸︸︷

=
∫
V

∑
k,i

fk,i(v)|dnv|
Thm. 4.11.16︷︸︸︷

=
∑
k,i

∫
V

fk,i(v)|dnv|

Thm. 4.10.12︷︸︸︷
=

∑
k,i

∫
U

∣∣det[DΦ(u)]
∣∣ fk,i(Φ(u)) |dnu|

Thm. 4.11.16︷︸︸︷
=

∫
U

∣∣det[DΦ(u)]
∣∣(∑

k,i

fk,i(Φ(u))
)
|dnu|;

Page 755 Last line: “Exercise A21.2” should be “Exercise A21.5.”
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Page 759 Exercise A21.5 (last exercise of the section, incorrectly denoted
A21.2): as indicated in the note for page 755, this exercise asks you to prove
the “if” part, not “only if”. In future editions this exercise will be:

Justify the (⇐= ) part of Theorem 4.11.20 (if |det[DΦ]|(f ◦Φ) is L-integrable,
then f is L-integrable and the formula given in the theorem is correct), using
the ( =⇒ ) part and the chain rule.

Page 760 In Figure A22.1, the top lines in both rectangles should be darker.

Page 763 4th line: rather than state that the exterior derivative dϕ is a
(k + 1)-form, we should say “Since ϕ is a k-form, the exterior derivative dϕ
should be a (k + 1)-form. Thus we need to evaluate it on k + 1 vectors and
check that it is multilinear and alternating. This involves integrating ϕ . . . ”

Page 765 The margin note should start with “In,” not “in.”

Page 766 Definition A24.1 should read

inDefinition A24.1 (Pullback by a linear transformation). Let V,W
be vector spaces, and T : V → W be a linear transformation. Then T ∗ is a
linear transformation Ak(W ) → Ak(V ), defined as follows: if ϕ is a k-form
on W , then T ∗ϕ is the k-form on V given by

T ∗ϕ(~v1, . . . , ~vk) = ϕ
(
T (~v1), . . . , T (~vk)

)
. A24.1

Page 767 In the last margin note, an end parenthesis is missing: g(Pf(x)

should be g(Pf(x))
In the line immediately before Definition A24.4 there is a superfluous comma.

Page 769 In the last line of Equation A24.14, the g∗f∗ should be f∗g∗:

= g∗ϕ
(
Pf(x)

(
[Df(x)]~v1, . . . , [Df(x)]~vk

))
= f∗g∗ϕ

(
Px(~v1, . . . , ~vk)

)
Page 770 We have rewritten the first paragraph:

Why does this result matter? To define the exterior derivative, we used the
parallelograms Px(~v1, . . . , ~vk). To do this, we had to know how to draw straight
lines from one point to another; we were using the linear (straight) structure of
a vector space. (We used Rn, but any vector space would have done.) Theorem
A24.8 says that “curved parallelograms” (little bits of manifolds) would have
worked as well. Thus the exterior derivative is not restricted to forms defined
on vector spaces.

(In this book we have discussed forms on vector spaces, but differential forms
can also be defined on manifolds embedded in Rn and on abstract manifolds.
Theorem A24.8 says that an exterior derivative exists for such forms. It is a
crucial result, since forms without an exterior derivative would be of no interest.)

Title of Theorem A24.8: By “intrinsic” we mean “inherent: independent
of some external conditions or circumstances.” The pullback of a form by a
C1 mapping is a C1 change of variables. Equation A24.17 says that when a
form is pulled back by a C1 mapping, its exterior derivative remains the same,
translated appropriately into the new variables.
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Page 770 In the first line of Equation A24.18 (last term), [Dg(x)] should
be [Df(x)]:

f∗dg
(
Px(~v)

)
= dg

(
Pf(x)[Df(x)]~v

)
= [Dg(f(x))][Df(x)]~v

= [Dg ◦ f(x)]~v = d(g ◦ f)
(
Px(~v)

)
= d(f∗g)

(
Px(~v)

)
.

A24.18

Equation A24.19: above the first equal sign, “Theorem A6.7.8” should be
“Theorem 6.7.8.”

Page 782 In Exercise A25.2, “(proof of Lemma A25.12)” should be “(see
Equation A25.12)”.

Inside back cover The “useful formulas: trigonometry” would be more
useful if they were all correct! Sorry! The fourth and fifth formulas should be

cosα = sin(π/2− α) and sinα = cos(π/2− α).

Index

Page 792 dominated convergence (Lebesgue), 515 (not 516)
The listing for diffeomorphism on page 514 should be deleted.

Page 797 triangle inequality, 76–77 (not 76)

Additions to index:

active variable, 179, 274, 293
augmented matrix, 190, 196
derivative of determinant, 481
divergence, 635–637, 639–640
d’Alembert, Jean Le Rond, 119, 217
Dedekind, Richard, 234
graph (of function), 30, 293, 294, 295, 377, 378, 379, 431, 433
invertibility of matrices, 223
KAM theorem, 438
Kolmogorov, Andrei, 417, 481
L-integrable, 508; see also Lebesgue integral
Lebesgue integral compared to Riemann integral, 508, 509
Leibnitz’s rule, 633
level curve, 301
level set, 301
limit, 89, 90, 93, 97
linear independence, 228
linear programming, 248
maximum, different from maximum value, 114
Maxwell’s equations, 628, 642
minimum, different from minimum value, 115
Moser, Jürgen, 438
normal vector field, 581–582

43



parametrized domain, 574–575
passive variable, 180, 274, 293
pigeonhole principle, 561
power set, 24
precisely if, 67
R-integrable, 508; see also Riemann integral
Riemann integral compared to Lebesgue integral, 508, 509
span, 228
Stokes’s theorem, generalized, 614
unit sphere, 311
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