
Chapter 6

Semi-explicit prefactorization
with implicit backward sweep

The methods discussed in chapter 5 are called explicit prefactorization methods because
both forward and backward sweeps have an explicit form. This chapter describes a
class of semi-explicit prefactorization algorithms with implicit backward sweep. These
efficient iterative algorithms, introduced recently by the author under the name modified
SLOR algorithms (or MSLOR) [91], are derived from the standard 1-line version of the
SOR method, using a preliminary elimination.

Section 6.1 presents the matrix formulation of these algorithms; it also gives theoret-
ical results in the form of a comparison theorem, proved using the nonnegative splitting
theory of chapter 2. The implementation of MSLOR algorithms for several difference
formulas in different mesh geometries is discussed in detail in section 6.2. Section 6.3
analyzes the convergence behavior of particular algorithms in numerical experiments
performed for the test problems of section 3.5. These results show that modified algo-
rithms provide solutions with an increased rate of convergence compared to the standard
methods.

6.1 Matrix notation

We assume that in the solved linear system

Aφφφ = c, (6.1)

the scalar decomposition of A = K− L−U is defined in such a way that if

L = L1+L2 and U = U1+U2, (6.2)

then with the notation

B = K− L1 −U1, L = L2 and U = U2 (6.3)

and the assumed splitting
A = M−N, (6.4)
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we have the following definitions of 1-line methods, analyzed in detail in subsection
4.3.1.

The 1-line Jacobi:

MJ = B, NJ = L2 + U2, B1 = M
−1
J NJ = B

−1
(
L2 + U2

)
(6.5)

The 1-line forward Gauss-Seidel:

MfG = B− L2, NfG = U2,

L
f
1 = M

−1
fGNfG =

(
B− L2

)−1
U2 =

(
I−B

−1
L2

)−1
B
−1

U2 (6.6a)

The 1-line backward Gauss-Seidel:

MbG = B−U2, NbG = L2

L
b
1 = M

−1
bGNbG =

(
B−U1

)−1
L2 =

(
I−B

−1
U2

)−1
B
−1

L2. (6.6b)

In 1-line orderings, the B are always tridiagonal matrices, so their inverses can be
replaced by factoring B as follows:

B = K− L1 −U1 =
(
I− L1P−1

)
P

(
I−P−1U1

)
, (6.7)

where P is assumed to be a nonsingular diagonal matrix, computed using the implicit
relation

P = K− L1P−1U1. (6.8)

Such a computation of P is possible because the strictly lower triangular matrix L1

has nonzero entries only on one subdiagonal, and the strictly upper triangular matrix
U1 has nonzero entries only on the symmetric superdiagonal. This means that the
product L1U1 is a diagonal matrix with the first entry on the diagonal equal to zero.
This property allows us to compute all entries of P because p1,1 = k1,1, and when we
compute pi,i for i > 1, only the entry pi−1,i−1 contributes to L1P−1U1.

For the 1-line Jacobi splitting, the equation Aφφφ = c is solved by

Bφφφ(t+1) =
(
L2 + U2

)
φφφ(t) + c (6.9)

or, equivalently, by
(
I− L1P−1

)
P

(
I−P−1U1

)
φφφ(t+1) =

(
L2 + U2

)
φφφ(t) + c. (6.10)

The above equation can be written in the form
[
I−P−1U1

]
φφφ(t+1) = P−1γγγ(t+1), (6.11)

where
γγγ(t+1) =

[
I− L1P−1

]−1[
(L2 + U2)φφφ(t) + c

]
, (6.12)


